Corovic, A., Ilic, V., Duric, S., Marijan, M., & Pavkovic,
B. (2018). The Real-Time Detection of Traffic
Participants
Using YOLO Algorithm.2018 26th Telecommunicatio
ns Forum (TELFOR).
doi:10.1109/telfor.2018.8611986
Cugurullo, F., & Acheampong, R. A. (2020). Smart cities.
In O. Jensen, B. Lassen, V. Kausfmann, M. Freudendal-
Pedersen, & I. S. G. Lange (Eds.), Handbook of urban
motilities. Routledge. [13] Wiseman, Yair.
"Autonomous vehicles." Research Anthology on Cross-
Disciplinary Designs and Applications of Automation.
IGI Global, 2022. 878-889. [14] Ahangar, M. Nadeem,
et al. "A survey of autonomous vehicles: Enabling
communication technologies and challenges." Sensors
21.3 (2021): 706.
Culley, Jacob, et al. "System design for a driverless
autonomous racing vehicle." 2020 12th International
Symposium on Communication Systems, Networks
and Digital Signal Processing (CSNDSP). IEEE, 2020.
Du, L., Zhang, R., & Wang, X. (2020, May). Overview of
two stage object detection algorithms. In Journal of
Physics: Conference Series (Vol. 1544, No. 1, p.
012033). IOP Publishing.
Fan, Q., Brown, L., & Smith, J. (2016, June). A closer look
at Faster R- CNN for vehicle detection. In 2016 IEEE
intelligent vehicles symposium (IV) (pp. 124-129).
IEEE.
G. P. Meyer, A. Laddha, E. Kee, C. Vallespi-Gonzalez, and
C. K. Wellington, “Lasernet: An efficient probabilistic
3d object detector for autonomous driving,” in
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 12 677–12
686 [8] D. Feng, L. Rosenbaum, F. Timm, and K.
Dietmayer, “Leveraging heteroscedastic aleatoric
uncertainties for robust real-time lidar 3d object
detection,” in 2019 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2019, pp. 1280–1287.
Lee, J., Wang, J., Crandall, D., Sabanovic, S., & Fox, G.
(2017). Real- Time, Cloud-Based Object Detection for
Unmanned Aerial Vehicles. 2017 First IEEE
International Conference on Robotic Computing (IRC).
doi:10.1109/irc.2017.77
Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B.,
& Belongie, S. (2017). Feature pyramid networks for
object detection. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp.
21172125).
Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B.,
& Belongie, S. (2017). Feature pyramid networks for
object detection. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp.
21172125).
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C. Y., & Berg, A. C. (2016, October). Ssd: Single
shot multibox detector. In European conference on
computer vision (pp. 21-37). Springer, Cham.
Masmoudi, M., Ghazzai, H., Frikha, M., & Massoud, Y.
(2019, September). Object detection learning
techniques for autonomous vehicle applications. In
2019 IEEE International Conference on Vehicular
Electronics and Safety (ICVES) (pp. 1 IEEE.
Object Detection in 2022: The Definitive Guide. Available
online: https://viso.ai/deep-learning/object-detection/
Pan, H., Wang, Z., Zhan, W., & Tomizuka, M. (2020,
September). Towards better performance and more
explainable uncertainty for 3d object detection of
autonomous vehicles. In 2020 IEEE 23rd International
Conference on Intelligent Transportation Systems
(ITSC) (pp. 1-7). IEEE.
Sarda, A., Dixit, S., & Bhan, A. (2021). Object Detection
for Autonomous Driving using YOLO [You Only Look
Once] algorithm. 2021 Third International Conference
on Intelligent Communication Technologies and
Virtual Mobile Networks (ICICV).
Sarda, A., Dixit, S., & Bhan, A. (2021). Object Detection
for Autonomous Driving using YOLO algorithm. 2021
2nd International Conference on Intelligent
Engineering and Management (ICIEM).
Sharma, T.; Debaque, B.; Duclos, N.; Chehri, A.; Kinder,
B.; Fortier, P. Deep Learning-Based Object Detection
and Scene Perception under Bad Weather Conditions.
Electronics 2022, 11, 563
Springenberg, J. T., Dosovitskiy, A., Brox, T., &
Riedmiller, M. (2014). Striving for simplicity: The all
convolutional net. arXiv preprint arXiv:1412.6806.
Takumi, Karasawa; Watanabe, Kohei; Ha, Qishen; Tejero-
De Pablos, Antonio; Ushiku, Yoshitaka; Harada,
Tatsuya (2017). [ACM Press the - Mountain View,
California, USA (2017.10.23-2017.10.27)]
Proceedings of the on Thematic Workshops of ACM
Multimedia 2017 - Thematic Workshops '17 -
Multispectral Object Detection for Autonomous
Vehicles., (), 35–43.
US Department of Transportation National Highway
Traffic Safety Administration, Critical Reasons for
Crashes Investi gated in the National Motor Vehicle
Crash Causation Survey, NHTSA, Washington, DC,
USA, 2015.
Wang, H., Liu, B., Ping, X., & An, Q. (2019). Path Tracking
Control for Autonomous Vehicles Based on an
Improved MPC. IEEE Access, 7, 10.1109/access.2019
.2944894 161064–161073. doi: