
Table 13: Qualitative comparison of MPPT algorithms.
Algorithm
Complexity
Conv. Speed
Stability
Adaptability
PSC Perf.
Sensors
P&O Low Fast Low Low Weak V, I
InC Medium Fast Low Low Weak V, I
FLC High Medium High Medium Good V, I
P&O+GA High Medium High High V.Good V, I
InC+GA High Medium High High V.Good V, I
bances such as measurement noise or sudden environ-
mental changes.
REFERENCES
Ahmed, J. and Salam, Z. (2014). A maximum power
point tracking (mppt) for pv system using cuckoo
search with partial shading capability. Applied En-
ergy, 119:118–130.
Al-Majidi, S. D., Abbod, M. F., and Al-Raweshidy, H. S.
(2018). A novel maximum power point tracking
technique based on fuzzy logic for photovoltaic sys-
tems. International Journal of Hydrogen Energy,
43(31):14158–14171.
Belhachat, F. and Larbes, C. (2017). Global maximum
power point tracking based on anfis approach for pv
array configurations under partial shading conditions.
Renewable and Sustainable Energy Reviews, 77:875–
889.
Benyoucef, A. s., Chouder, A., Kara, K., Silvestre, S., and
sahed, O. A. (2015). Artificial bee colony based algo-
rithm for maximum power point tracking (mppt) for
pv systems operating under partial shaded conditions.
Applied Soft Computing, 32:38–48.
Kaced, K., Larbes, C., Ramzan, N., Bounabi, M., and Dah-
mane, Z. e. (2017). Bat algorithm based maximum
power point tracking for photovoltaic system under
partial shading conditions. Solar Energy, 158:490–
503.
Katche, M. L., Makokha, A. B., Zachary, S. O., and
Adaramola, M. S. (2023). A comprehensive review
of maximum power point tracking (mppt) techniques
used in solar pv systems. Energies, 16(5):2206.
Kazimierczuk, M. K. and Ayachit, A. (2016). Laboratory
manual for pulse-width modulated dc-dc power con-
verters, second edition. Laboratory manual supple-
menting the second edition of the textbook.
Lapsongphon, C. and Nualyai, S. (2021). A comparison of
mppt solar charge controller techniques: A case for
charging rate of battery. pages 278–281.
Martins, J., Spataru, S., Sera, D., Stroe, D.-I., and Lashab,
A. (2019). Comparative study of ramp-rate control
algorithms for pv with energy storage systems. Ener-
gies, 12(7):1342.
Mumtaz, S., Ahmad, S., Khan, L., Ali, S., Kamal, T., and
Hassan, S. (2018). Adaptive feedback linearization
based neurofuzzy maximum power point tracking for
a photovoltaic system. Energies, 11(3):606.
Remoaldo, D. and Jesus, I. (2021). Analysis of a traditional
and a fuzzy logic enhanced perturb and observe algo-
rithm for the mppt of a photovoltaic system. Algo-
rithms, 14(1):24.
Rezk, H., Fathy, A., and Abdelaziz, A. Y. (2017). A
comparison of different global mppt techniques based
on meta-heuristic algorithms for photovoltaic system
subjected to partial shading conditions. Renewable
and Sustainable Energy Reviews, 74:377–386.
Shaiek, Y., Ben Smida, M., Sakly, A., and Mimouni, M. F.
(2013). Comparison between conventional methods
and ga approach for maximum power point tracking
of shaded solar pv generators. Solar Energy, 90:107–
122.
Sharma, A. K., Pachauri, R. K., Choudhury, S., Minai, A. F.,
Alotaibi, M. A., Malik, H., and M
´
arquez, F. P. G.
(2023). Role of metaheuristic approaches for imple-
mentation of integrated mppt-pv systems: A compre-
hensive study. Mathematics, 11(2):269.
Tajiri, H. and Kumano, T. (2012). Input filtering of mppt
control by exponential moving average in photovoltaic
system. pages 372–377.
Texas Instruments (2011). Basic calculation of a buck con-
verter’s power stage (rev. b). Application Report, re-
vised July 2011.
Titri, S., Larbes, C., Toumi, K. Y., and Benatchba, K.
(2017). A new mppt controller based on the ant colony
optimization algorithm for photovoltaic systems under
partial shading conditions. Applied Soft Computing,
58:465–479.
Yang, B., Zhong, L., Zhang, X., Shu, H., Yu, T., Li, H.,
Jiang, L., and Sun, L. (2019). Novel bio-inspired
memetic salp swarm algorithm and application to
mppt for pv systems considering partial shading con-
dition. Journal of Cleaner Production, 215:1203–
1222.
Application of MPPT Techniques Using Intelligent and Conventional Control Strategies
165