Capuano, N., Fenza, G., Loia, V. and Stanzione, C., 2022.
Explainable artificial intelligence in cybersecurity: A
survey. Ieee Access, 10, pp.93575-93600.
Dalal, R., Khari, M. and Hernandez, M., 2021. Persuasive
simulation of optimized protocol for OppNet. Dynamic
Systems and Applications, 30(5), pp.865-900.
Dwivedi, R., Dave, D., Naik, H., Singhal, S., Omer, R.,
Patel, P., Qian, B., Wen, Z., Shah, T., Morgan, G. and
Ranjan, R., 2023. Explainable AI (XAI): Core ideas,
techniques, and solutions. ACM Computing
Surveys, 55(9), pp.1-33.
Farahani, G., 2021. Black hole attack detection using K‐
nearest neighbor algorithm and reputation calculation
in mobile ad hoc networks. Security and
communication Networks, 2021(1), p.8814141.
Fejrskov, M., Pedersen, J.M. and Vasilomanolakis, E.,
2020, June. Cyber-security research by ISPs: a NetFlow
and DNS anonymization policy. In 2020 International
Conference on Cyber Security and Protection of Digital
Services (Cyber Security) (pp. 1-8). IEEE.
Ghimire, S., Yaseen, Z.M., Farooque, A.A., Deo, R.C.,
Zhang, J. and Tao, X., 2021. Streamflow prediction
using an integrated methodology based on
convolutional neural network and long short-term
memory networks. Scientific Reports, 11(1), p.17497.
Goodfellow, I., Bengio, Y. and Courville, A Deep
Learning. Cambridge, MA, USA: MIT Press, 2016.
Hamza, F. and Maria Celestin Vigila, S., 2019. Review of
machine learning-based intrusion detection techniques
for MANETs. In Computing and Network
Sustainability: Proceedings of IRSCNS 2018 (pp. 367-
374). Springer Singapore
Hodo, E., Bellekens, X., Hamilton, A., Tachtatzis, C. and
Atkinson, R., 2017. Shallow and deep networks
intrusion detection system: A taxonomy and
survey. arXiv preprint arXiv:1701.02145.
Ieracitano, C., Adeel, A., Morabito, F.C. and Hussain, A.,
2020. A novel statistical analysis and autoencoder
driven intelligent intrusion detection
approach. Neurocomputing, 387, pp.51-62.
Kanthimathi, S. and Prathuri, J.R., 2020, November.
Classification of misbehaving nodes in MANETS using
machine learning techniques. In 2020 2nd PhD
Colloquium on Ethically Driven Innovation and
Technology for Society (PhD EDITS) (pp. 1-2). IEEE
Kim, S. and Park, K.J., 2021. A survey on machine-learning
based security design for cyber-physical
systems. Applied Sciences, 11(12), p.5458.
Laqtib, S., Yassini, K.E. and Hasnaoui, M.L., 2019,
October. A deep learning method for intrusion
detection systems-based machine learning in MANET.
In Proceedings of the 4th international conference on
smart city applications (pp. 1-8).
Laqtib, S., El Yassini, K. and Hasnaoui, M.L., 2020. A
technical review and comparative analysis of machine
learning techniques for intrusion detection systems in
MANET. International Journal of Electrical and
Computer Engineering, 10(3), p.2701.
Liao, H.J., Lin, C.H.R., Lin, Y.C. and Tung, K.Y., 2013.
Intrusion detection system: A comprehensive
review. Journal of network and computer
applications, 36(1), pp.16-24.
Liu, Y., Fieldsend, J.E. and Min, G., 2017. A framework of
fog computing: Architecture, challenges, and
optimization. IEEE Access, 5, pp.25445-25454.
Lunt, T.F., 1993. A survey of intrusion detection
techniques. Computers & Security, 12(4), pp.405-418.
Mishra, P., Varadharajan, V., Tupakula, U. and Pilli, E.S.,
2018. A detailed investigation and analysis of using
machine learning techniques for intrusion
detection. IEEE communications surveys &
tutorials, 21(1), pp.686-728.
Moustafa, N., Koroniotis, N., Keshk, M., Zomaya, A.Y. and
Tari, Z., 2023. Explainable intrusion detection for cyber
defences in the internet of things: Opportunities and
solutions. IEEE Communications Surveys &
Tutorials, 25(3), pp.1775-1807
Mukherjee, M., Matam, R., Shu, L., Maglaras, L., Ferrag,
M.A., Choudhury, N. and Kumar, V., 2017. Security
and privacy in fog computing: Challenges. IEEE
Access, 5, pp.19293-19304.
Najafli, S., Toroghi Haghighat, A. and Karasfi, B., 2024.
Taxonomy of deep learning-based intrusion detection
system approaches in fog computing: a systematic
review. Knowledge and Information Systems, 66(11),
pp.6527-6560.
Nishani, L. and Biba, M., 2016. Machine learning for
intrusion detection in MANET: a state-of-the-art
survey. Journal of Intelligent Information Systems, 46,
pp.391-407.
Nishani, L. and Biba, M., 2016. Machine learning for
intrusion detection in MANET: a state-of-the-art
survey. Journal of Intelligent Information Systems, 46,
pp.391-407.
Nweke, H.F., Teh, Y.W., Al-Garadi, M.A. and Alo, U.R.,
2018. Deep learning algorithms for human activity
recognition using mobile and wearable sensor
networks: State of the art and research
challenges. Expert Systems with Applications, 105,
pp.233-261.
O'shea, K. and Nash, R., 2015. An introduction to
convolutional neural networks. arXiv preprint
arXiv:1511.08458
Pan, Z., Wang, Y. and Pan, Y., 2020. A new locally
adaptive k-nearest neighbor algorithm based on
discrimination class. Knowledge-Based Systems, 204,
p.106185.
Pandey, A., Kumar, S., Pattanaik, B. and Pattnaik, M.,
2021. A Survey: Machine Learning Algorithms for
Network Security. SSRN Electron. Journal
Poongothai, T. and Duraiswamy, K., 2014, February.
Intrusion detection in mobile AdHoc networks using
machine learning approach. In International
Conference on Information Communication and
Embedded Systems (ICICES2014) (pp. 1-5). IEEE
Popli, R., Sethi, M., Kansal, I., Garg, A. and Goyal, N.,
2021, August. Machine learning based security
solutions in MANETs: State of the art approaches.
In Journal of physics: conference series (Vol. 1950, No.
1, p. 012070). IOP Publishing