and settings adapted to drivers. It’s not only this
research that fixes the drawbacks of current driver
monitoring technologies but it shows that multi-
modal data fusion and real-time AI-powered decision
support can be key for better vehicle performance and
user safety. AI-BICS could impact more than just cars
with revolutionary fleet management, autonomous
vehicle operation and insurance models. With the
evolution of automotive into more intelligent, user-
centric systems, AI-BICS is one innovation that has
the potential to change the paradigm of safety and
personalization. It is scalable and flexible, which
promises to open the doors to future advancements,
which is a great advance in the merging of AI and
human-centred technology.
REFERENCES
Alagumalai, W. Shou, O. Mahian, M. Aghbashlo, M.
Tabatabaei et al., “Self-powered sensing systems with
learning capability,” Joule, vol. 6, pp. 1475–1500,
2022. DOI: 10.1016/j.joule.2022.06.001.
B. Feng, T. Sun, W. Wang, Y. Xiao, J. Huo et al.,
“Venation-mimicking, ultrastretchable, room-
temperature-attachable metal tapes for integrated
electronic skins,” Adv. Mater., vol. 35, pp. 2208568,
2023. DOI: 10.1002/adma.202208568.
C. Chen, S. Ding, J. Wang, “Digital health for aging
populations,” Nat. Med., vol. 29, pp. 1623–1630, 2023.
DOI: 10.1038/s41591-023-02391-8.
C. Yang, B. Sun, G. Zhou, T. Guo, C. Ke et al.,
“Photoelectric memristor-based machine vision for
artificial intelligence applications,” ACS Mater. Lett.,
vol. 5, pp. 504–526, 2023. DOI:
10.1021/acsmaterialslett.2c00911.
C.E. Okwudire, H.V. Madhyastha, “Distributed
manufacturing for and by the masses,” Science, vol.
372, pp. 341–342, 2021. DOI: 10.1126/science.
abg4924.
F. Sun, Q. Lu, S. Feng, T. Zhang, “Flexible artificial
sensory systems based on neuromorphic devices,” ACS
Nano, vol. 15, pp. 3875–3899, 2021. DOI:
10.1021/acsnano.0c10049.
G. Cao, P. Meng, J. Chen, H. Liu, R. Bian et al., “2D
material based synaptic devices for neuromorphic
computing,” Adv. Funct. Mater., vol. 31, pp. 2005443,
2021. DOI: 10.1002/adfm.202005443.
J. Luo, W. Gao, Z.L. Wang, “The triboelectric
nanogenerator as an innovative technology toward
intelligent sports,” Adv. Mater., vol. 33, pp. 2004178,
2021. DOI: 10.1002/adma.202004178.
M. Wang, Y. Luo, T. Wang, C. Wan, L. Pan et al.,
“Artificial skin perception,” Adv. Mater., vol. 33, pp.
2003014, 2021. DOI: 10.1002/adma.202003014.
M. Wang, T. Wang, Y. Luo, K. He, L. Pan et al., “Fusing
stretchable sensing technology with machine learning
for human–machine interfaces,” Adv. Funct. Mater.,
vol. 31, pp. 2008807, 2021. DOI:
10.1002/adfm.202008807.
S.H. Kwon, L. Dong, “Flexible sensors and machine
learning for heart monitoring,” Nano Energy, vol. 102,
pp. 107632 2022. DOI: 10.1016/j.nanoen.2022.10763
2.
W. Huang, X. Xia, C. Zhu, P. Steichen, W. Quan et al.,
“Memristive artificial synapses for neuromorphic
computing,” Nano-Micro Lett., vol. 13, pp. 85, 2021.
DOI: 10.1007/s40820-021-00618-2.
X. Wang, H. Yang, E. Li, C. Cao, W. Zheng et al.,
“Stretchable transistor-structured artificial synapses for
neuromorphic electronics,” Small, vol. 19, pp.
2205395, 2023. DOI: 10.1002/smll.202205395.
Y. Luo, M.R. Abidian, J.-H. Ahn, D. Akinwande, A.M.
Andrews et al., “Technology roadmap for flexible
sensors,” ACS Nano, vol. 17, pp. 5211–5295, 2023.
DOI: 10.1021/acsnano.2c12606.
Y. Wang, M.L. Adam, Y. Zhao, W. Zheng, L. Gao et al.,
“Machine learning-enhanced flexible mechanical
sensing,” Nano-Micro Lett., vol. 15, pp. 55, 2023. DOI:
10.1007/s40820-023-01013-9.