DCNN model outperformed other approaches like
ResNet50, Inception V3, and Xception, achieving an
accurateness of 98.05%, AUC of 97.32%, recall of
98.70%, and training loss function of 0.29. To further
enhance early lung cancer diagnosis, we might
incorporate additional datasets and explore other ML
and DL frameworks in the upcoming, aiming to
improve the overall performance and reliability of our
detection methods.
REFERENCES
“Breast cancer statistics of american cancer socity.
[online]. availabe:https://www.cancer.org/cancer.html,
” [Accessed: 13- November-2022].
Abhir Bhandary , G. Ananth Prabhu , V. Rajinikanth , K.
Palani Thanaraj , Suresh Chandra Satapathy , David E.
Robbins , Charles Shasky , YuDong Zhang , Joao
Manuel R.S. Tavares , N. Sri Madhava Raja ,
DeepLearning Framework to Detect Lung ˜
Abnormality – A study with Chest X-Ray and Lung CT
Scan Images, Pattern Recognition Letters (2019), doi:
https://doi.org/10.1016/j.patrec.2019.11.013
Ausawalaithong, W., Thirach, A., Marukatat, S., &
Wilaiprasitporn, T. (2018). Automatic Lung Cancer
Prediction from Chest X-ray Images Using the Deep
Learning Approach. 2018 11th Biomedical Engineerin
g International Conference (BMEiCON).
Da Silva, G.L.F.; da Silva Neto, O.P.; Silva, A.C.; de Paiva,
A.C.; Gattass, M. Lung nodules diagnosis based on
evolutionary convolutional neural network. Multimed.
Tools Appl. 2017, 76, 19039–19055.
Deepa, R., Karthick, R., Velusamy, J., & Senthilkumar, R.
(2025). Performance analysis of multiple-input
multiple output orthogonal frequency division multiple
xing system using arithmetic optimization algorithm.
Computer Standards & Interfaces, 92, 103934.
Hany, M. (2020, August 20). Chest CT-scan images
dataset. Kaggle. Retrieved November 13, 2022, from
https://www.kaggle.com/datasets/mohamedhanyyy/ch
est-ctscan-images
Kaur, S., Hooda, R., Mittal, A., Akashdeep, & Sofat, S.
(2017). Deep CNN-Based Method for Segmenting
Lung Fields in Digital Chest Radiographs. Advanced
Informatics for Computing Research, 185– 194.
doi:10.1007/978-981-10-5780-9_17.
M. Mamun, A. Farjana, M. Al Mamun and M. S.
Ahammed, "Lung cancer prediction model using
ensemble learning techniques and a systematic review
analysis," 2022 IEEE World AI IoT Congress (AIIoT),
2022, pp. 187 193, doi:10.1109/AIIoT54504.2022.981
7326.
M. Mamun, M. I. Mahmud, M. I. Hossain, A. M. Islam, M.
S. Ahammed, M. M. Uddin, "Vocal Feature Guided
Detection of Parkinson's Disease Using Machine
Learning Algorithms", 2022 IEEE 13th Annual
Ubiquitous Computing, Electronics & Mobile
Communication Conference (UEMCON), 2022,
M. Mamun, S. B. Shawkat, M. S. Ahammed, M. M. Uddin,
M. I. Mahmud, A. M. Islam, "Deep Learning Based
Model for Alzheimer's Disease Detection Using Brain
MRI Images", 2022 IEEE 13th Annual Ubiquitous
Computing, Electronics & Mobile Communication
Conference (UEMCON), 2022.
Makaju, Suren, P. W. C. Prasad, Abeer Alsadoon, A. K.
Singh, and A. Elchouemi. "Lung cancer detection using
CT scan images." Procedia Computer Science 125
(2018): 107-114.
Naqi, S.M.; Sharif, M.; Jaffar, A. Lung nodule detection
and classification based on geometric fit in parametric
form and deep learning. Neural Comput. Appl. 2018,
3456789.
Nibali, A.; He, Z.; Wollersheim, D. Pulmonary nodule
classification with deep residual networks. Int. J.
Comput. Assist. Radiol. Surg. 2017, 12, 1799–1808.
Senthilkumar Ramachandraarjunan, Venkatakrishnan
Perumalsamy & Balaji Narayanan 2022, ‘IoT based
artificial intelligence indoor air quality monitoring
system using enabled RNN algorithm techniques’, in
Journal of Intelligent & Fuzzy Systems, vol. 43, no. 3,
pp. 2853-2868
Senthilkumar R, Dr.P.Venkatakrishnan,Dr.N.Balaji, Intelli
gent based novel embedded system based IoT Enabled
air pollution monitoring system, ELSEVIER
Microprocessors and Microsystems Vol.77, June 2020
Shaffie, A.; Soliman, A.; Fraiwan, L.; Ghazal, M.; Taher,
F.; Dunlap, N.; Wang, B.; van Berkel, V.; Keynton, R.;
Elmaghraby, A.; et al. A Generalized Deep
Learning Based Diagnostic System for Early Diagnosi
s of Various Types of Pulmonary Nodules. Technol.
Cancer Res. Treat. 2018, 17
Xie, Y.; Zhang, J.; Xia, Y.; Fulham, M.; Zhang, Y. Fusing
texture, shape and deep model-learned information at
decision level for automated classification of lung
nodules on chest CT. Inf. Fusion 2018, 42, 102–110.
Zhang, T.; Zhao, J.; Luo, J.; Qiang, Y. Deep belief network
for lung nodules diagnosed in CT imaging. Int. J.
Perform. Eng. 2017, 13, 1358– 1370