
apnea. IEEE journal of biomedical and health
informatics, 24(7), 2073-2081.
Lee, Y. H., Jeon, S., Auh, Q. S., & Chung, E. J. (2024).
Automatic prediction of obstructive sleep apnea in
patients with temporomandibular disorder based on
multidata and machine learning. Scientific
Reports, 14(1), 19362.
Leppänen, T., Myllymaa, S., Kulkas, A., & Töyräs, J.
(2021). Beyond the apnea–hypopnea index: alternative
diagnostic parameters and machine learning solutions
for estimation of sleep apnea severity. Sleep, 44(9),
zsab134.
Liu, K., Geng, S., Shen, P., Zhao, L., Zhou, P., & Liu, W.
(2024). Development and application of a machine
learning-based predictive model for obstructive sleep
apnea screening. Frontiers in big Data, 7, 1353469.
Liu, M. H., Chien, S. Y., Wu, Y. L., Sun, T. H., Huang, C.
S., Hsu, K. C., & Hang, L. W. (2024). EfficientNet-
based machine learning architecture for sleep apnea
identification in clinical single-lead ECG signal data
sets. BioMedical Engineering OnLine, 23(1), 57.
Ma, B., Wu, Z., Li, S., Benton, R., Li, D., Huang, Y., ... &
Huang, J. (2020). Development of a support vector
machine learning and smart phone Internet of Things-
based architecture for real-time sleep apnea
diagnosis. BMC Medical Informatics and Decision
Making, 20, 1-13.
Ma, E. Y., Kim, J. W., Lee, Y., Cho, S. W., Kim, H., &
Kim, J. K. (2021). Combined unsupervised-supervised
machine learning for phenotyping complex diseases
with its application to obstructive sleep
apnea. Scientific Reports, 11(1), 4457.
Mandeville, R., Sedghamiz, H., Mansfield, P., Sheean, G.,
Studer, C., Cordice, D., ... & Koola, J. (2024). Deep
learning enhanced transmembranous electromyograph
y in the diagnosis of sleep apnea. BMCneuroscience, 2
5(1), 80.
Mencar, C., Gallo, C., Mantero, M., Tarsia, P., Carpagnano,
G. E., Foschino Barbaro, M. P., & Lacedonia, D.
(2020). Application of machine learning to predict
obstructive sleep apnea syndrome severity. Health
informatics journal, 26(1), 298-317.
Mousavi, S., Afghah, F., & Acharya, U. R. (2019).
SleepEEGNet: Automated sleep stage scoring with
sequence to sequence deep learning approach. PloS
one, 14(5), e0216456.
Mukherjee, D., Dhar, K., Schwenker, F., & Sarkar, R.
(2021). Ensemble of deep learning models for sleep
apnea detection: an experimental study. Sensors, 21(1
6), 5425.
Padovano, D., Martinez-Rodrigo, A., Pastor, J. M., Rieta, J.
J., & Alcaraz, R. (2025). Deep Learning and
Recurrence Information Analysis for the Automatic
Detection of Obstructive Sleep Apnea. Applied
Sciences, 15(1).
Panda, N. R., Paramanik, S., Raut, P. K., & Bhuyan, R.
(2025). Prediction of sleep disorders using Novel
decision support neutrosophic based machine learning
models. Neutrosophic Sets and Systems, 82, 303-320.
Park, M. J., Choi, J. H., Kim, S. Y., & Ha, T. K. (2024). A
deep learning algorithm model to automatically score
and grade obstructive sleep apnea in adult
polysomnography. Digital Health, 10,2055207624129
1707.
Pépin, J. L., Letesson, C., Le-Dong, N. N., Dedave, A.,
Denison, S., Cuthbert, V., ... & Gozal, D. (2020).
Assessment of mandibular movement monitoring with
machine learning analysis for the diagnosis of
obstructive sleep apnea. JAMA network open, 3(1),
e1919657-e1919657.
Rajawat, A. S., Rawat, R., Barhanpurkar, K., Shaw, R. N.,
& Ghosh, A. (2021). Sleep Apnea detection using
contact-based and non-contact-based using deep
learning methods. Computationally Intelligent Systems
and their Applications, 87-103.
Retamales, G., Gavidia, M. E., Bausch, B., Montanari, A.
N., Husch, A., & Goncalves, J. (2024). Towards
automatic home-based sleep apnea estimation using
deep learning. npj Digital Medicine, 7(1), 144.
Salsone, M., Quattrone, A., Vescio, B., Ferini-Strambi, L.,
& Quattrone, A. (2022). A machine learning approach
for detecting idiopathic REM sleep behavior
disorder. Diagnostics, 12(11), 2689.
Setiawan, F., & Lin, C. W. (2022). A deep learning
framework for automatic sleep apnea classification
based on empirical mode decomposition derived from
single-lead electrocardiogram. Life, 12(10), 1509.
Shi, Y., Zhang, Y., Cao, Z., Ma, L., Yuan, Y., Niu, X., ... &
Ren, X. (2023). Application and interpretation of
machine learning models in predicting the risk of severe
obstructive sleep apnea in adults. BMC Medical
Informatics and Decision Making, 23(1), 230.
Stretch, R., Ryden, A., Fung, C. H., Martires, J., Liu, S.,
Balasubramanian, V., ... & Zeidler, M. R. (2019).
Predicting nondiagnostic home sleep apnea tests using
machine learning. Journal of Clinical Sleep
Medicine, 15(11), 1599-1608.
Su, Z., Kumar, S., Tavolara, T. E., Gurcan, M. N., Segal,
S., & Niazi, M. K. K. (2023, April). Predicting
obstructive sleep apnea severity from craniofacial
images using ensemble machine learning models.
In Medical Imaging 2023: ComputerAidedDiagnosis (
Vol. 12465, pp. 644-649). SPIE.
Tsai, C. Y., Liu, W. T., Lin, Y. T., Lin, S. Y., Houghton, R.,
Hsu, W. H., ... & Majumdar, A. (2022). Machine
learning approaches for screening the risk of
obstructive sleep apnea in the Taiwan population based
on body profile. Informatics for Health and Social
Care, 47(4), 373-388.
Tuncer, S. A., Akılotu, B., & Toraman, S. (2019). A deep
learning-based decision support system for diagnosis of
OSAS using PTT signals. Medical hypotheses, 127, 15-
22.
Yook, S., Kim, D., Gupte, C., Joo, E. Y., & Kim, H. (2024).
Deep learning of sleep apnea-hypopnea events for
accurate classification of obstructive sleep apnea and
determination of clinical severity. Sleep Medicine, 114,
211-219.
An In-Depth Analysis of Sleep Disorder Diagnosis Utilizing Machine Learning Methodologies
143