Results indicated that the improvements in user-
perceived empathy, stress reduction, and satisfaction
were significant, demonstrating the system's
effectiveness. The integration offairness-aware
training and bias mitigation technology was the
backbone that enabled the chatbot to provide
unbiased support to its millions of users, a vital step
in building a trusted, equitable digital companion.
Additionally, the Explainable AI module enabled
explanations to users about the reason behind the
effect of each action, enabling transparency and trust
for the future.
In summary, this work contributes to the technical
development of AI-driven mental health tools and
emphasizes the significance of ethical and user-
centric design in emotionally sensitive domains. The
chatbot we propose here is scalable and easy to
deploy as a solution for the first responder for mental
health and stress management, and with great
potential to become a part of holistic digital health
systems. The future directions could include clinical
validation, integration with wearable sensors, multi-
lingual or culture specific adaptation to make it
applicable to a global context.
REFERENCES
Abd-Alrazaq, A. A., Alajlani, M., Ali, N., Denecke, K.,
Bewick, B. M., & Househ, M. (2021). Perceptions and
opinions of patients about mental health chatbots: Scop-
ing review. Journal of Medical Internet Research,
23(1), e17828. https://doi.org/10.2196/17828Spring-
erLink+1Harvard Business School+1
Abd-Alrazaq, A. A., Alajlani, M., Ali, N., Denecke, K.,
Bewick, B. M., & Househ, M. (2021). Perceptions and
opinions of patients about mental health chatbots: Scop-
ing review. Journal of Medical Internet Research,
23(1), e17828. https://doi.org/10.2196/17828Spring-
erLink
Ali, M. R., Razavi, S. Z., Langevin, R., Al Mamun, A.,
Kane, B., Rawassizadeh, R., Schubert, L. K., & Hoque,
E. (2024). Empathetic conversations in mental health:
Fine-tuning LLMs for therapeutic dialogue. In Pro-
ceedings of the 21st Workshop on Biomedical Lan-
guage Processing (pp. 285–297). Springer.
Ali, M. R., Razavi, S. Z., Langevin, R., Al Mamun, A.,
Kane, B., Rawassizadeh, R., Schubert, L. K., & Hoque,
E. (2024). Empathetic conversations in mental health:
Fine-tuning LLMs for therapeutic dialogue. In Pro-
ceedings of the 21st Workshop on Biomedical Lan-
guage Processing (pp. 285–297). Springer.
AlMakinah, R., Canbaz, A., & Alshammari, R. (2025). En-
hancing mental health support through human-AI col-
laboration: Toward secure and empathetic AI-enabled
chatbots. arXiv preprint arXiv:2410.02783.
https://arxiv.org/abs/2410.02783
AlMakinah, R., Canbaz, A., & Alshammari, R. (2025). En-
hancing mental health support through human-AI col-
laboration: Toward secure and empathetic AI-enabled
chatbots. arXiv preprint arXiv:2410.02783.
https://arxiv.org/abs/2410.02783
Das, A., Selek, S., Warner, A. R., Zuo, X., Hu, Y., Keloth,
V. K., Li, J., Zheng, W. J., & Xu, H. (2022). Conversa-
tional bots for psychotherapy: A study of generative
transformer models using domain-specific dialogues. In
Proceedings of the 21st Workshop on Biomedical Lan-
guage Processing (pp. 285–297). Association for Com-
putational Linguistics.SpringerLink
Das, R., & Gupta, A. (2025). Wellbot: A companion and a
mental health chatbot for emotional wellbeing. Interna-
tional Journal of Creative Research Thoughts, 13(1),
660. https://ijcrt.org/papers/IJCRT2501660.pdfIJCRT
Neupane, S., Dongre, P., Gracanin, D., & Kumar, S. (2025).
Wearable meets LLM for stress management: A
duoethnographic study integrating wearable-triggered
stressors and LLM chatbots for personalized interven-
tions. arXiv preprint arXiv:2502.17650.
https://arxiv.org/abs/2502.17650arXiv
Sharma, A., Lin, I. W., Miner, A. S., Atkins, D. C., & Alt-
hoff, T. (2021). Towards facilitating empathic conver-
sations in online mental health support: A reinforce-
ment learning approach. arXiv preprint
arXiv:2101.07714. https://arxiv.org/abs/2101.07714
arXiv+1SpringerLink+1
Sharma, A., Lin, I. W., Miner, A. S., Atkins, D. C., & Alt-
hoff, T. (2023). Human–AI collaboration enables more
empathic conversations in text-based peer-to-peer men-
tal health support. Nature Machine Intelligence, 5, 1–
12. https://doi.org/10.1038/s42256-022-00593-2
SpringerLink+1arXiv+1
Shen, J., DiPaola, D., Ali, S., Sap, M., Park, H. W., &
Breazeal, C. (2024). Empathy toward artificial intelli-
gence versus human experiences and the role of trans-
parency in mental health and social support chatbot de-
sign: Comparative study. JMIR Mental Health, 11(1),
e62679. https://doi.org/10.2196/62679JMH - JMIR
Mental Health+1ScienceDirect+1
Song, T., Jamieson, J., Zhu, T., Yamashita, N., & Lee, Y.-
C. (2025). From interaction to attitude: Exploring the
impact of human-AI cooperation on mental illness
stigma. arXiv preprint arXiv:2501.01220.
https://arxiv.org/abs/2501.01220arXiv
Wang, Y., Wang, Y., Xiao, Y., Escamilla, L., Augustine,
B., Crace, K., Zhou, G., & Zhang, Y. (2025). Evaluat-
ing an LLM-powered chatbot for cognitive restructur-
ing: Insights from mental health professionals. arXiv
preprint arXiv:2501.15599.
https://arxiv.org/abs/2501.15599 arXiv
Wang, Y., Wang, Y., Xiao, Y., Escamilla, L., Augustine,
B., Crace, K., Zhou, G., & Zhang, Y. (2025). Evaluat-
ing an LLM-powered chatbot for cognitive restructur-
ing: Insights from mental health professionals. *arXiv
preprint arXiv
SMitigated, Multimodal AI Chatbot for Empathetic Mental Health Support and Stress Relief