REFERENCES
Atienza, D. (2024). Edge deep learning in computer
vision and medical diagnostics. Artificial Intelligence
Review, 57(3), 2345-2367.
Batool, I. (2025). Real-Time Health Monitoring Using 5G
Networks: A Deep Learning-Based Architecture for
Remote Patient Care. arXiv preprint arXiv:2501.01027.
arXiv.
Cioffi, R., Travaglioni, M., Piscitelli, G., Petrillo, A., & De
Felice, F. (2020). Artificial Intelligence and Machine
Learning Applications in Smart Production: Progress,
Trends, and Directions. Sustainability, 12(2), 492.
Dogan, A., Constantin, J., Ruggiero, M., Burg, A., &
Atienza, D. (2020). Multi-Core Architecture Design for
Ultra-Low-Power Wearable Health Monitoring
Systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 39(11),
3245-3258.
Duch, L., Basu, S., Braojos, R., Ansaloni, G., & Pozzi, L.
(2020). HEAL-WEAR: An Ultra-Low Power
Heterogeneous System for Bio-Signal Analysis. IEEE
Transactions on Circuits and Systems I: Regular
Papers, 67(10), 3456-3469.
Elbir, A. M., & Coleri, S. (2020). Federated Learning
for Vehicular Networks. arXiv preprint
arXiv:2006.08985.
Hennebelle, A., Dieng, Q., Ismail, L., & Buyya, R. (2025).
SmartEdge: Smart Healthcare End-to-End Integrated
Edge and Cloud Computing System for Diabetes
Prediction Enabled by Ensemble
MachineLearning. arXiv preprintarXiv:2502.15762.
Iranfar, A., Zapater, M., & Atienza, D. (2020). Machine
Learning-Based Quality-Aware Power and Thermal
Management of Multistream HEVC Encoding on
Multicore Servers. IEEE Transactions on Parallel and
Distributed Systems, 31(12), 2904-2917.
Loh, J., Dudchenko, L., Viga, J., & Gemmeke, T. (2025).
Towards Hardware Supported Domain Generalization
in DNN-Based Edge Computing Devices for Health
Monitoring. arXiv preprint arXiv:2503.09661.arXiv
Mamaghanian, H., Khaled, N., Atienza, D., &
Vandergheynst, P. (2020). Compressed Sensing
for RealTime Energy Efficient ECG Compression on
Wireless Body Sensor Nodes. IEEE Transactions on
Biomedical Engineering, 67(3), 838-848.
Pahlevan, A., Qu, X., Zapater, M., & Atienza, D. (2020).
Integrating Heuristic and Machine-Learning Methods
for Efficient Virtual Machine Allocation in Data
Centers. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 39(11),
3245-3258.
Pokhrel, S. R., & Choi, J. (2020). Federated Learning
for Edge Computing: A Survey. IEEE Communications
Magazine, 58(12), 50-56.
Putra, K. T., Chen, H. C., Prayitno, Ogiela, M. R., & Chou,
C. L. (2021). Federated Compressed Learning Edge
Computing Framework with Ensuring Data Privacy for
PM2.5 Prediction in Smart City Sensing Applications.
Sensors, 21(2), 456.
Rincon, F., Recas, J., Khaled, N., & Atienza, D. (2020).
Development and evaluation of multi-lead wavelet-
based ECG delineation algorithms for
embedded wireless sensor nodes. IEEE Transactions
on Information Technology in Biomedicine, 24(2),
387-398.
Scrugli, M. A., Loi, D., Raffo, L., & Meloni, P. (2021). An
adaptive cognitive sensor node for ECG monitoring in
the Internet of Medical Things. arXiv preprint
arXiv:2106.06498.
Simon, W. A., Qureshi, Y. M., Rios, M. A., Levisse, A. S.
J., & Zapater, M. (2020). BLADE: An in-Cache
Computing Architecture for Edge Devices. IEEE
Transactions on Computers, 69(11), 1602-1614.
Sridhar, A., Vincenzi, A., Atienza, D., & Brunschwiler, T.
(2020). 3D-ICE: a Compact Thermal Model for Early-
Stage Design of Liquid-Cooled ICs. IEEE Transactions
on Computers, 69(1), 45-58.
Sridhar, A., Vincenzi, A., Ruggiero, M., & Atienza, D.
(2020). Neural Network-Based Thermal Simulation of
Integrated Circuits on GPUs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 39(12), 4567-4578.
Sufian, A., You, C., & Dong, M. (2021). A Deep
Transfer Learningbased Edge Computing Method for
Home Health Monitoring. arXiv preprint
arXiv:2105.02960.
Surrel, G., Aminifar, A., Rincon, F., Murali, S., & Atienza,
D. (2020). Online Obstructive Sleep Apnea Detection
on Wearable Sensors. IEEE Transactions on
Biomedical Circuits and Systems, 14(2), 209-220.
Velichko, A. (2021). A Method for Medical Data Analysis
Using the LogNNet for Clinical Decision Support
Systems and Edge Computing in Healthcare. arXiv
preprint arXiv:2108.02428.