
of international education and the responsible
application of AI.
REFERENCES
AbuAlRub, M., & Bader, A. (2024). Deep learning
detection method for large language models-generated
scientific text. arXiv preprint arXiv:2403.00828.
https://arxiv.org/abs/2403.00828arXiv+1SpringerLink
+1
Ahire, P., Wadekar, Y., Shendge, T., Dhokale, M., & Ohol,
V. (2021). Plagiarism detection with paraphrase
recognizer using deep learning. International Research
Journal of Engineering and Technology (IRJET), 8(12),
1353–1356. https://www. irjet.net/archi ves/V8/i12/IR
JET-V8I12228.pdfIRJET
Altynbek, A., Turan, C., & Makhmutova, A. (2025).
Plagiarism types and detection methods: A systematic
survey of algorithms in text analysis. Frontiers in
Computer Science, 7, Article 1504725.
https://doi.org/10.3389/fcomp.2025.1504725Frontiers
+1Frontiers+1
Amzuloiu, C., Mihăescu, M. C., & Rebedea, T. (2021).
Combining Encoplot and NLP-based deep learning for
plagiarism detection. In Intelligent Data Engineering
and Automated Learning – IDEAL 2021 (pp. 97–106).
Springer. https://doi.org/10.1007/978-3-030-91608-
4_10SpringerLink
Bakhteev, O., & Ivanov, V. (2021). Cross-language
plagiarism detection: A case study. In Proceedings of
the European Conference on Academic Integrity and
Plagiarism (pp. 45–52). European Network for
Academic Integrity.
https://www.academicintegrity.eu/conference/proceedi
ngs/2021/bakhteev_et_al21.pdfacademicintegrity.eu
Chang, C., Alsharma, A., & Nesreen, A. (2024). T-SRE:
Transformer-based semantic relation extraction for
contextual plagiarism detection. Journal of King Saud
University - Computer and Information Sciences.
https://doi.org/10.1016/j.jksuci.2024.02.003ScienceDi
rect
Kumar, A., & Kaur, P. (2025). A comprehensive strategy
for identifying plagiarism in academic writing using
NLP and deep learning. Journal of Information and
Optimization Sciences, 46(1), 89–104.
https://doi.org/10.1007/s43995-025-00108-
1SpringerLink
Kumar, V., & Sharma, R. (2022). Plagiarism detection
system in scientific publication using deep learning.
International Journal on Technical and Physical
Problems of Engineering (IJTPE), 14(4), 17–24.
https://www.iotpe.com/IJTPE/IJTPE-2022/IJTPE-
Issue53-Vol14-No4-Dec2022/3-IJTPE-Issue53-
Vol14-No4-Dec2022-pp17-24.pdfiotpe.com
Miller, J., & Davis, L. (2023). Enhanced plagiarism
detection through advanced natural language
processing techniques. International Journal of
Advanced Computer Science and Applications, 14(9),
123–130. https://thesai.org/Dow nloads/Volu
me14No9/Paper_44-Enhanced_P lagiarism_Det
ection_Through_Advanced_Natural_Language.pdfThe
Science and Information Organization+1The Science
and Information Organization+1
Moravvej, S. V., Mousavirad, S. J., Moghadam, M. H., &
Saadatmand, M. (2021). An LSTM-based plagiarism
detection via attention mechanism and a population-
based approach for pre-training parameters with
imbalanced classes. arXiv preprint arXiv:2110.08771.
https://arxiv.org/abs/2110.08771arXiv+1arXiv+1
Quidwai, M. A., Li, C., & Dube, P. (2023). Beyond black
box AI-generated plagiarism detection: From sentence
to document level. arXiv preprint arXiv:2306.08122.
https://arxiv.org/abs/2306.08122ACL
Anthology+2arXiv+2arXiv+2
Quidwai, M. A., Li, C., & Dube, P. (2023). Beyond black
box AI-generated plagiarism detection: From sentence
to document level. In Proceedings of the 18th
Workshop on Innovative Use of NLP for Building
Educational Applications (BEA 2023) (pp. 727–735).
Association for Computational Linguistics.
https://doi.org/10.18653/v1/2023.bea-1.58
arXiv+2ACL Anthology+2arXiv+2
Ravichandran, R., & Kumar, S. (2022). Plagiarism
detection using natural language processing and
machine learning. International Journal of Advanced
Research in Computer and Communication
Engineering (IJARCCE), 11(7), 45–50.
https://ijarcce.com/wpcontent/uploads/2022/08/IJARC
CE.2022.117114.pdfPeer-reviewed Journal
Shouman, M. (2022). Reliable plagiarism detection system
based on deep learning techniques. Neural Computing
and Applications, 34(15), 11689–11700.
https://doi.org/10.1007/s00521-022-07486-
wSpringerLink+1SpringerLink+1
Smith, A., & Lee, B. (2023). Utilizing deep natural
language processing to detect plagiarism. In
Proceedings of the International Conference on
Artificial Intelligence and Soft Computing (pp. 345–
356). Springer
Wahle, J. P., Ruas, T., Foltýnek, T., Meuschke, N., & Gipp,
B. (2021). Identifying machine-paraphrased
plagiarism. arXiv preprint arXiv:2103.11909.
https://arxiv.org/abs/2103.11909arXiv+3arXiv+3Sprin
gerLink+3
Wahle, J. P., Ruas, T., Foltýnek, T., Meuschke, N., & Gipp,
B. (2021). Are neural language models good
plagiarists? A benchmark for neural paraphrase
detection. arXiv preprint arXiv:2103.12450.
https://arxiv.org/abs/2103.12450
arXiv+3arXiv+3arXiv+3
ICRDICCT‘25 2025 - INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION,
COMMUNICATION, AND COMPUTING TECHNOLOGIES
362