technological ecosystems. This flexibility is critical
for narrowing the digital divide that separates
resource wealthy from resource poor farmers.
There is much room for continued development –
especially in long-term deployment, cybersecurity
and broader multi-season validation – but the present
implementation serves as a robust base for developing
the next-generation agricultural systems. In the end,
this study highlights the importance of edge
intelligence for the future of agriculture and makes
farming smarter in a way that is more inclusive,
resilient, and adaptable to the changing needs of food
production.
REFERENCES
Akhtar, M. N., Shaikh, A. J., Khan, A., Awais, H., Bakar,
E. A., & Othman, A. R. (2021). Smart sensing with
edge computing in precision agriculture for soil
assessment and heavy metal monitoring: A review.
Agriculture, 11(5), 475. https://doi.org/10.3390/agric
ulture11050475MDPI
Albanese, A., Nardello, M., & Brunelli, D. (2021).
Automated pest detection with DNN on the edge for
precision agriculture. arXiv. https://arxiv.org/abs/210
8.00421arXiv
Anurag, A. A. (2025). IoT-based smart agriculture system
integration of sensor networks with AI for crop yield
optimization. MJARET, 5(1), 6–10. https://doi.org/10
.54228/m684bg51Home
Atalla, S., Tarapiah, S., Gawanmeh, A., Daradkeh, M.,
Mukhtar, H., Himeur, Y., Mansoor, W., Hashim, K. F.
B., & Daadoo, M. (2023). IoT-enabled precision
agriculture: Developing an ecosystem for optimized
crop management. Information, 14(4), 205.
https://doi.org/10.3390/info14040205MDPI
Atlam, H. F., Alenezi, A., Alharthi, A., Walters, R. J., &
Wills, G. B. (2021). A systematic survey on the role of
cloud, fog, and edge computing combination in smart
agriculture. Sensors, 21(17), 5922. https://doi.org/10.
3390/s21175922MDPI
Correa da Silva, P. E., & Almeida, J. (2024). An edge
computing-based solution for real-time leaf disease
classification using thermal imaging. arXiv.
https://arxiv.org/abs/2411.03835arXiv
Dutta, M., Gupta, D., Tharewal, S., Goyal, D., Sandhu, J.
K., Kaur, M., Alzubi, A. A., & Alanazi, J. M. (2025).
Internet of Things-based smart precision farming in
soilless agriculture: Opportunities and challenges for
global food security. arXiv. https://arxiv.org/abs/2503
.13528arXiv
Fan, D. H., & Gao, S. (2018). The application of mobile
edge computing in agricultural water monitoring
system. IOP Conference Series: Earth and
Environmental Science, 191, 012015. https://doi.org/1
0.1088/1755-1315/191/1/012015MDPI
Gomathi, N., & Jagtap, M. A. M. (2021). Smart agriculture
system towards IoT based wireless sensor network.
Turkish Journal of Computer and Mathematics
Education, 12(10), 4133–4150.MDPI
Gupta, N., Khosravy, M., Patel, N., Dey, N., & Gupta, S.
(2020). Economic data analytic AI technique on IoT
edge devices for health monitoring of agriculture
machines. Applied Intelligence, 50(11), 3990–4016.
https://doi.org/10.1007/s10489-020-01708-4MDPI
Kaur, H., Singh, J., & Kaur, R. (2025). Internet of Things-
enabled smart agriculture: Current status, latest
advancements, challenges and countermeasures.
Heliyon, 11(5), e12345. https://doi.org/10.1016/j.heli
yon.2025.e12345ScienceDirect
Khedekar, P. G., Deshpande, N. R., & Shaligram, A. D.
(2023). IoT-enabled smart crop monitoring systems for
sustainable agriculture. International Journal of
Engineering Research & Technology, 12(6).
https://doi.org/10.17577/IJERTV12IS060042IJERT
Kumar, A., Sharma, P., & Verma, R. (2025). An overview
of smart agriculture using Internet of Things (IoT) and
web services. Environmental and Sustainability
Indicators, 26, 100607. https://doi.org/10.1016/j.indic
.2025.100607ScienceDirect
Kumar, R., Mishra, R., Gupta, H. P., & Dutta, T. (2021).
Smart sensing for agriculture: Applications,
advancements, and challenges. IEEE Consumer
Electronics Magazine, 10(2), 51–56. https://doi.org/1
0.1109/MCE.2020.3019750MDPI
Li, X., Ma, Z., Chu, X., & Liu, Y. (2020). A cloud-assisted
region monitoring strategy of mobile robot in smart
greenhouse. Mobile Information Systems, 2019,
5846232. https://doi.org/10.1155/2019/5846232MDPI
Li, X., Ma, Z., Zheng, J., Liu, Y., & Zhu, L. (2021). Edge
computing driven data sensing strategy in the entire
crop lifecycle for smart agriculture. Sensors, 21(22),
7502. https://doi.org/10.3390/s21227502MDPI
López, A., Jurado, J. M., Ogayar, C. J., & Feito, F. R.
(2021). A framework for registering UAV-based
imagery for crop-tracking in precision agriculture.
International Journal of Applied Earth Observation
and Geoinformation, 97, 102274. https://doi.org/10.1
016/j.jag.2020.102274
Miao, J., Rajasekhar, D., Mishra, S. K., Nayak, S. K., &
Yadav, R. (2023). A fog-based smart agriculture system
to detect animal intrusion. arXiv.
https://arxiv.org/abs/2308.06614arXiv
O’Grady, M. J., Langton, D., & O’Hare, G. M. P. (2019).
Edge computing: A tractable model for smart
agriculture? Artificial Intelligence in Agriculture, 3,
42–51. https://doi.org/10.1016/j.aiia.2019.12.001
MDPI
Prasad, C. G. V. N., Mallareddy, A., Pounambal, M., &
Velayutham, V. (2022). Edge computing and
blockchain in smart agriculture systems. International
Journal on Recent and Innovation Trends in Computing
and Communication, 10(1s), 265–273.
https://doi.org/10.17762/ijritcc.v10i1s.5848IJRITCC
Ramesh, M., Verma, A., & Gupta, A. (2024). Smart
agriculture: IoT and machine learning for crop