
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin,
V., Goyal, N., K
¨
uttler, H., Lewis, M., Yih, W.-t.,
Rockt
¨
aschel, T., et al. (2020). Retrieval-augmented
generation for knowledge-intensive nlp tasks. In
Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pages 9459–9474.
Lin, C.-Y. (2004). Rouge: A package for automatic evalu-
ation of summaries. Technical report, ACL-04 work-
shop. Technical Report, Version 1.5.1.
Lin, Z., Madotto, A., Wu, C.-S., and Fung, P. (2020). Xper-
sona: Evaluating multilingual personalized chatbot. In
Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 730–739.
Lin, Z., Xiong, C., Liu, W., and Sun, B. (2021). Zero-
shot dialogue generation with cross-lingual language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 346–360.
Liu, Z., Chen, Y., Wang, R., and Zhao, H. (2023).
Psychadapter: Adapting large language models for
psychologically-grounded dialogue generation. arXiv
preprint arXiv:2304.08254.
Liu, Z., Sun, M., and Tang, J. (2024). Kelp: Knowledge-
enhanced language model prompting. arXiv preprint
arXiv:2401.12345.
Liu, Z., Zhang, Y., Xie, P., and Sun, M. (2021). Knowledge-
enhanced natural language processing. National Sci-
ence Review, 8(6):nwab029.
Logan IV, R. L., Liu, N. F., Peters, M. E., Gardner, M.,
and Singh, S. (2019). Barack’s wife hillary: Using
knowledge graphs for fact-aware language modeling.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
5962–5971.
Loshchilov, I. and Hutter, F. (2019). Decoupled weight
decay regularization. In International Conference on
Learning Representations (ICLR).
Majumder, N., Hong, P., Banchs, R. E., Li, H., and Fung,
P. (2020). Cross-lingual transfer of persona-based di-
alogue systems. arXiv preprint arXiv:2007.02036.
McGuinness, D. L. and Van Harmelen, F. (2004). OWL Web
Ontology Language Overview. W3C Recommenda-
tion.
Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002).
Bleu: a method for automatic evaluation of machine
translation. In Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 311–318. ACL.
Prudhomme, C., Schaffert, M., and Ponciano, J.-J. (2024).
Odkar: “ontology-based dynamic knowledge acqui-
sition and automated reasoning using nlp, owl, and
swrl”. pages 457–465.
Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sen-
tence embeddings using siamese bert-networks. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3982–3992.
Scialom, T., Dray, P.-A., Lamprier, S., Piwowarski, B., and
Staiano, J. (2021). Questeval: Summarization asks
for fact-based evaluation. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 6594–6604.
Sennrich, R., Haddow, B., and Birch, A. (2016). Neural
machine translation of rare words with subword units.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
1715–1725.
Shimorina, A. and Gardent, C. (2019). Webnlg challenge:
Overview and evaluation results. Journal of Web Se-
mantics, 59:100495.
Vrande
ˇ
ci
´
c, D. and Kr
¨
otzsch, M. (2014). Wikidata: a free
collaborative knowledgebase. Communications of the
ACM, 57(10):78–85.
Yao, L., Liu, H., Yang, J., and Zhao, W. (2023). Kongzi: A
knowledge-augmented language model for historical
narratives. arXiv preprint arXiv:2303.06789.
Zhang, S., Dinan, E., Urbanek, J., Szlam, A., Kiela, D.,
and Weston, J. (2018). Personalizing dialogue agents:
I have a dog, do you have pets too? In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2204–2213.
Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., and
Artzi, Y. (2020). Bertscore: Evaluating text genera-
tion with bert. In International Conference on Learn-
ing Representations (ICLR).
Zheng, B., Wu, L., Li, Y., Shen, T., Yan, R., and Wang,
X. (2023). Contrastive activation steering for efficient
personalization in language models. arXiv preprint
arXiv:2302.08433.
Zheng, V., Ponti, E. M., Saphra, N., Reiter, N., and Cot-
terell, R. (2021). Does localization help cross-lingual
transfer in low-resource settings? In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 2830–2845.
Ontology-Grounded Language Modeling: Enhancing GPT-Based Philosophical Text Generation with Structured Knowledge
467