Barman, U., Choudhury, S., & Dey, A. (2022). Tomato leaf
disease classification using MobileNetV2. Neural Pro-
cessing Letters, 54, 3093–3108.
Buja, I., Sabella, E., Monteduro, A. G., Chiriacò, M. S., De
Bellis, L., Luvisi, A., & Maruccio, G. (2021). From tra-
ditional assays to in-field diagnostics. Sensors, 21(6),
2129.
Chouhan, S. S., Kaul, A., & Singh, U. P. (2022). Image
recognition-based automatic disease detection. Multi-
media Tools and Applications, 81, 891–912.
Chowdhury, M. J. U., Mou, Z. I., Afrin, R., & Kibria, S.
(2025). Leaf disease detection and classification using
deep learning: Bangladesh’s perspective.
arXiv:2501.03305. https://arxiv.org/abs/2501.03305
Ding, W., Abdel-Basset, M., Alrashdi, I., & Hawash, H.
(2024). Deep learning for plant disease monitoring in
precision agriculture. Information Sciences, 665,
120338.
El Fatimi, E. H. (2024). Leaf diseases detection using deep
learning methods. arXiv:2501.00669.
https://arxiv.org/abs/2501.00669
Hosny, K. M., et al. (2024). Deep learning and explainable
AI for potato leaf diseases. Frontiers in AI, 7, Article
1449329. https://doi.org/10.3389/frai.2024.1449329
Jain, S., & Khandelwal, R. (2022). GreenGram disease clas-
sification using capsule networks. Applied Soft
Computing, 113, 108034.
Kaur, S., & Singh, K. (2025). Explainable CNN model for
leaf disease severity grading. Expert Systems with Ap-
plications, 223, 119968.
Latha, M. R., & Kumar, A. (2024). Optimized CNN-LSTM
fusion model for leaf disease classification. Pattern
Recognition Letters, 171, 137–144.
Lebrini, Y., & Ayerdi Gotor, A. (2024). Crops disease de-
tection: From leaves to field. Agronomy, 14(11), 2719.
Munisami, T., Ramsurn, N., & Hurbungs, V. (2023). Trans-
fer learning for leaf disease identification. Information
Processing in Agriculture, 10(1), 50–59.
Ngugi, H. N., Ezugwu, A. E., Akinyelu, A. A., & Abu-
aligah, L. (2024). Revolutionizing crop disease detec-
tion with computational deep learning. Environmental
Monitoring and Assessment, 196(3), 302.
Pantazi, X. E., Moshou, D., & Tamouridou, A. A. (2021).
Deep learning in real-time leaf disease diagnostics. Bi-
osystems Engineering, 196, 77–87.
Pathak, N., Mehta, R., & Sharma, N. (2024). LeafNet+: A
lightweight CNN for multi-class plant disease detec-
tion. Computers and Electrical Engineering, 109,
108773.
Rizwan, M., Amin, M. S., & Iqbal, M. (2024). Real-time
leaf disease detection using ensemble deep learning
models. Journal of King Saud University – Computer
and Information Sciences, 36(2), 255–266.
Sambasivam, G., Prabu Kanna, G., Chauhan, M. S., Raja,
P., & Kumar, Y. (2025). A hybrid deep learning model
approach for automated detection of cassava leaf dis-
eases. Scientific Reports, 15, Article 7009.
https://doi.org/10.1038/s41598-025-90646-4
Sharma, A., Rajesh, B., & Javed, M. (2021). Detection of
plant leaf disease in JPEG domain using transfer learn-
ing. arXiv:2107.04813.
https://arxiv.org/abs/2107.04813
Shoaib, M., Sadeghi-Niaraki, A., Ali, F., Hussain, I., &
Khalid, S. (2025). Leveraging deep learning for plant
disease detection. Frontiers in Plant Science, 16, Arti-
cle 1538163.
https://doi.org/10.3389/fpls.2025.1538163
Singh, V., & Misra, A. K. (2021). Detection of plant leaf
diseases using CNN. Procedia Computer Science, 167,
1152–1161.
Sujatha, R., Krishnan, S., Chatterjee, J. M., & Gandomi, A.
H. (2025). Advancing plant leaf disease detection inte-
grating machine learning and deep learning. Scien-
tific Reports, 15, Article 11552.
https://doi.org/10.1038/s41598-024-72197-2
Sundhar, S., Sharma, R., Maheshwari, P., Kumar, S. R., &
Kumar, T. S. (2025). Enhancing leaf disease classifica-
tion using GAT-GCN hybrid model.
arXiv:2504.04764. https://arxiv.org/abs/2504.04764
Wang, H., Wang, W., & Xu, Y. (2023). Vision transformers
for plant leaf disease recognition. Computers and Elec-
tronics in Agriculture, 204, 107547.
Lightweight Deep Learning System for Multi-Crop Leaf Disease Detection and Classification in Realtime Environments