
In summary, this research presents a scalable,
privacy-preserving, resource efficient solution for
emerging requirements of m-health, and serves as a
stepping stone toward intelligent, edge-enabled
health systems of the future.
REFERENCES
Agarwal, P., & Alam, M. (2020). A lightweight deep learn-
ing model for human activity recognition on edge de-
vices. Procedia Computer Science, 167, 2360–2369.
https://doi.org/10.1016/j.procs.2020.03.289
Aminu, M., Kakudi, H. A., Hassan, M., Hamada, M., Umar,
U., & Salisu, M. L. (2025). Lightweight deep learning
models for edge devices—A survey. International
Journal of Computer Information Systems and Indus-
trial Management Applications, 17, 18.
https://doi.org/10.70917/ijcisim-2025-0014
Baciu, V.-E., Braeken, A., Segers, L., & Silva, B. d. (2025).
Secure tiny machine learning on edge devices: A light-
weight dual attestation mechanism. Future Internet,
17(2), 85. https://doi.org/10.3390/fi17020085
Batool, I. (2025). Real-time health monitoring using 5G
networks: A deep learning-based architecture for re-
mote patient care. arXiv.
https://arxiv.org/abs/2501.01027
Chen, C., Zhang, Y., & Zhou, Y. (2024). TinyModelNet: A
framework for neural network compression on edge
healthcare devices. IEEE Internet of Things Journal,
11(3), 2431–2442.
https://doi.org/10.1109/JIOT.2023.3321457
Fang, B., Zeng, X., & Zhang, M. (2018). NestDNN: Re-
source-aware on-device deep learning. In MobiCom
(pp. 115–127).
https://doi.org/10.1145/3241539.3241547
Ghosh, S., Banerjee, A., & Mitra, S. (2023). Lightweight
CNN for on-device heart rate prediction using PPG sig-
nals. Biomedical Signal Processing and Control, 81,
104412. https://doi.org/10.1016/j.bspc.2022.104412
Hassan, A., Malik, H., & Kim, D. (2023). Lightweight neu-
ral network compression for wearable health monitor-
ing. Sensors, 23(2), 523.
https://doi.org/10.3390/s23020523
Kumar, M., & Chawla, P. (2022). Deep learning-based hu-
man activity recognition for healthcare using mobile
sensors. Journal of Ambient Intelligence and Human-
ized Computing, 13, 829–840.
https://doi.org/10.1007/s12652-021-03046-6
Lee, J., Kim, D., & Yoo, H. (2023). Ultra-low power CNNs
for real-time arrhythmia detection on mobile devices.
IEEE Transactions on Biomedical Circuits and Sys-
tems, 17(1), 45–56.
https://doi.org/10.1109/TBCAS.2022.3226687
Loh, J., Dudchenko, L., Viga, J., & Gemmeke, T. (2025).
Towards hardware supported domain generalization in
DNN-based edge computing devices for health moni-
toring. arXiv. https://arxiv.org/abs/2503.09661
Luo, Y., Zhang, Z., & Chen, L. (2021). Real-time respira-
tory monitoring using wearable sensors and deep learn-
ing. Sensors, 21(5), 1809.
https://doi.org/10.3390/s21051809
Mittal, P. (2024). A comprehensive survey of deep learn-
ing-based lightweight object detection models for edge
devices. Artificial Intelligence Review, 57, Article 242.
https://doi.org/10.1007/s10462-024-10877-1
Rahman, M. M., Chowdhury, M. E. H., & Khandakar, A.
(2021). A survey on deep learning in respiratory analy-
sis using chest X-ray and CT images. Computers in Bi-
ology and Medicine, 132, 104306.
https://doi.org/10.1016/j.compbiomed.2021.104306
Rashid, N., Demirel, B. U., & Al Faruque, M. A. (2021).
AHAR: Adaptive CNN for energy-efficient human ac-
tivity recognition on edge. arXiv.
https://arxiv.org/abs/2102.01875
Roy, D., Sinha, R., & Saha, S. (2023). Efficient edge intel-
ligence for wearable ECG signal classification. IEEE
Access, 11, 23654–23666. https://doi.org/10.1109/AC-
CESS.2023.3241083
Saeb, S., Zhang, M., Karr, C. J., Schueller, S. M., Corden,
M. E., Kording, K. P., & Mohr, D. C. (2015). Mobile
sensor correlates of depression. JMIR, 17(7), e175.
https://doi.org/10.2196/jmir.4273
Shafique, M., Khawaja, B. A., Sabir, F., Qaisar, S. B., &
Mustaqim, M. M. (2021). Internet of Medical Things
(IoMT): Applications and benefits. Journal of Commu-
nications and Networks, 23(2), 126–137.
https://doi.org/10.23919/JCN.2021.000006
Spicher, N., Klingenberg, A., Purrucker, V., & Deserno, T.
M. (2021). Edge computing in 5G cellular networks for
real-time ECG analysis with textile sensors. arXiv.
https://arxiv.org/abs/2107.13767
Wang, X., Liu, C., & Hu, J. (2022). TinyML in healthcare:
Deploying machine learning on edge devices for vital
sign monitoring. IEEE Access, 10, 15823–15836.
https://doi.org/10.1109/ACCESS.2022.3149057
Zeng, X., Cao, K., & Zhang, M. (2017). MobileDeepPill:
Recognizing pill images with deep learning. In
MobiSys (pp. 56–67).
https://doi.org/10.1145/3081333.3081365
Zeng, X., Fang, B., & Zhang, M. (2020). Distream: Adap-
tive distributed edge intelligence for video. In ACM
SenSys (pp. 1–14).
https://doi.org/10.1145/3384419.3430786
Zeng, X., Yan, M., & Zhang, M. (2021). Mercury: Efficient
on-device distributed DNN training. In ACM SenSys
(pp. 1–14). https://doi.org/10.1145/3485730.3485947
Zhang, M., & Yan, S. (2021). CATE: Computation-aware
architecture encoding with transformers. In ICML
2021. https://proceedings.mlr.press/v139/yan21a.html
Zhang, M., & Liu, L. (2022). FedRolex: Model-heteroge-
neous federated learning with rolling sub-model extrac-
tion. In NeurIPS 2022. https://proceedings.neu-
rips.cc/paper_files/paper/2022/hash/4e8c5a8d.html
Lightweight Deep Learning for Real-Time Health Monitoring on Edge Devices
249