
u (V)
-30 -20 -10 0 10 20 30
z
-200
-100
0
100
200
hysteresis curve
lower reduced part
upper reduced part
u (V)
-30 -20 -10 0 10 20 30
z
-200
-100
0
100
200
hysteresis curve
lower reduced part
upper reduced part
Figure 5: Hysteresis curve representing a NLS part of Hammerstein model of PL140 (blue) with indicated averaged upper
(red) and lower (green) parts for f = 40 Hz (left) and f = 80 Hz (right).
REFERENCES
Bai, E.-W. (2004). Decoupling the linear and nonlinear
parts in Hammerstein model identification. Automat-
ica, 40(4):671–676.
Barbosa, M. P. S., Rakotondrabe, M., and Ayala, H. V. H.
(2020). Deep learning applied to data-driven dynamic
characterization of hysteretic piezoelectric microma-
nipulators. IFAC-PapersOnLine, 53(2):8559–8564.
Belda, K. and Pavelkov
´
a Kukli
ˇ
sov
´
a, L. (2023). Particle
swarm optimisation for model predictive control adap-
tation. page 144 – 149.
Dai, Y., Li, D., and Wang, D. (2023). Review on the non-
linear modeling of hysteresis in piezoelectric ceramic
actuators. Actuators, 12(12).
De Boor, C. and De Boor, C. (1978). A practical guide to
splines, volume 27. springer New York.
Fang, J., Liu, W., Chen, L., Lauria, S., Miron, A., and
Liu, X. (2023). A survey of algorithms, applications
and trends for particle swarm optimization. Interna-
tional Journal of Network Dynamics and Intelligence,
2(1):24–50.
Fu, Y., Gao, S., Li, L., Chen, C., and Melnikau, S. (2024).
Rate-dependent hysteresis modeling of piezoceramic
actuators and parameter identification with an im-
proved genetic algorithm. In 2024 9TH INTERNA-
TIONAL CONFERENCE ON ELECTRONIC TECH-
NOLOGY AND INFORMATION SCIENCE, ICETIS
2024, pages 82–86.
Gan, J. and Zhang, X. (2019). A review of nonlinear hys-
teresis modeling and control of piezoelectric actua-
tors. AIP Advances, 9(4).
Jahandideh, H. and Namvar, M. (2012). Use of pso in pa-
rameter estimation of robot dynamics; part two: Ro-
bustness. In 2012 16th International Conference on
System Theory, Control and Computing (ICSTCC),
pages 1–6.
Jin, J., Sun, X., and Chen, Z. (2024). Inverse feedfor-
ward control of piezoelectric actuators using opti-
mized composite neural network-based hammerstein
model. JOURNAL OF INTELLIGENT MATERIAL
SYSTEMS AND STRUCTURES, 35(20):1558–1575.
Liu, D., Dong, J., Guo, S., Tan, L., and Yu, S. (2023). Pa-
rameter identification of model for piezoelectric actu-
ators. Micromachines, 14(5):1050.
Ljung, L. (1998). System Identification: Theory for the
User. Pearson Education.
Meng, Y., Wang, X., Li, L., Huang, W., and Zhu, L.
(2022). Hysteresis modeling and compensation of
piezoelectric actuators using gaussian process with
high-dimensional input. In Actuators, volume 11,
page 115. MDPI.
Pavelkov
´
a Kukli
ˇ
sov
´
a, L. and Belda, K. (2024). Identifica-
tion of piezoelectric actuator using bayesian approach
and neural networks. In Proceedings of the Interna-
tional Conference on Informatics in Control, Automa-
tion and Robotics, volume 1, page 591 – 599.
Physik-Instrumente, S. E. (2025). PICMA Bender PL112
- PL140 Datasheet. https://www.physikinstrumente.
com/en/products/piezoelectric-transducers-actuators/
pl112-pl140-picma-bender-103000. [Accessed
22-07-2025].
Shi, Y. and Eberhart, R. (1998). A modified particle swarm
optimizer. In IEEE Int. Conf. on Evolutionary Com-
putation Proceedings. IEEE World Congress on Com-
putational Intelligence, pages 69–73.
Son, N. N., Van Kien, C., and Anh, H. P. (2021). Hysteresis
compensation and adaptive control based evolution-
ary neural networks for piezoelectric actuator. Inter-
national Journal of Intelligent Systems, 36(10):5472–
5492.
Wilkie, J., Johnson, M., and Katebi, R. (2002). Simple sys-
tems: second-order systems, pages 173–195. Macmil-
lan Education UK, London.
Yang, C., Verbeek, N., Xia, F., Wang, Y., and Youcef-
Toumi, K. (2020). Modeling and control of piezoelec-
tric hysteresis: A polynomial-based fractional order
disturbance compensation approach. IEEE Transac-
tions on Industrial Electronics, 68(4):3348–3358.
Yang, L., Zhao, Z., Zhang, Y., and Li, D. (2022). Rate-
dependent modeling of piezoelectric actuators for
nano manipulation based on fractional hammerstein
model. MICROMACHINES, 13(1).
Yi, S., Zhang, Q., Xu, L., Wang, T., and Li, L. (2022).
Estimation of Rate-Dependent Hammerstein Model of Piezo Bender Actuator
537