
different flavors of DS projects. Moreover, the poten-
tial of incorporating Generative AI capabilities into
DS process models for increasing automation and ef-
ficiency in DS project tasks can be explored.
REFERENCES
Bishop, C. M. (2006). Pattern Recognition and Machine
Learning.
Chang, W. L. and Grady, N. (2019). NIST Big Data Inter-
operability Framework: Volume 1, Definitions.
Chen, H., Chiang, R. H. L., and Storey, V. C. (2012). Busi-
ness Intelligence and Analytics: From Big Data to Big
Impact. MIS Quarterly, 36(4):1165–1188.
Das, M., Cui, R., Campbell, D. R., Agrawal, G., and Ram-
nath, R. (2015). Towards Methods for Systematic Re-
search on Big Data. 2015 IEEE International Confer-
ence on Big Data, pages 2072–2081.
Demchenko, Y., Belloum, A., Los, W., Wiktorski, T.,
Manieri, A., Brocks, H., Becker, J., Heutelbeck, D.,
Hemmje, M., and Brewer, S. (2016). EDISON Data
Science Framework: A Foundation for Building Data
Science Profession for Research and Industry. In 2016
IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), pages 620–626.
IEEE.
Gama, J.,
ˇ
Zliobait
˙
e, I., Bifet, A., Pechenizkiy, M., and
Bouchachia, A. (2014). A survey on concept drift
adaptation. ACM Computing Surveys, 46(4):1–37.
Gerhart, N., Torres, R., and Giddens, L. (2023). Challenges
in the Model Development Process: Discussions with
Data Scientists. Communications of the Association
for Information Systems, 53(1):591–611.
G
¨
okalp, M., G
¨
okalp, E., Kayabay, K., Kocyigit, A., and
Eren, P. (2021). Data-driven manufacturing: An as-
sessment model for data science maturity. Journal of
Manufacturing Systems, 60:123–132.
G
¨
okay, G. T., Nazlıel, K., S¸ener, U., G
¨
okalp, E., G
¨
okalp,
M. O., Genc¸al, N., Da
˘
gdas¸, G., and Eren, P. E. (2023).
What Drives Success in Data Science Projects: A Tax-
onomy of Antecedents. In Garc
´
ıa M
´
arquez, F. P.,
Jamil, A., Eken, S., and Hameed, A. A., editors, Com-
putational Intelligence, Data Analytics and Applica-
tions, volume 643 of Lecture Notes in Networks and
Systems, pages 448–462. Springer International Pub-
lishing, Cham.
Haertel, C., Daase, C., Staegemann, D., Nahhas, A., Pohl,
M., and Turowski, K. (2023a). Toward Standard-
ization and Automation of Data Science Projects:
MLOps and Cloud Computing as Facilitators. In
Proceedings of the 15th International Joint Confer-
ence on Knowledge Discovery, Knowledge Engineer-
ing and Knowledge Management, pages 294–302.
SCITEPRESS - Science and Technology Publications.
Haertel, C., Holtkemper, M., Staegemann, D., Beecks, C.,
and Turowski, K. (2025). Unveiling Data Science
Team Roles and Competencies: A Literature-Based
Analysis. AMCIS 2025 Proceedings.
Haertel, C., Pohl, M., Nahhas, A., Staegemann, D., and Tur-
owski, K. (2022). Toward A Lifecycle for Data Sci-
ence: A Literature Review of Data Science Process
Models. PACIS 2022 Proceedings.
Haertel, C., Pohl, M., Nahhas, A., Staegemann, D., and Tur-
owski, K. (2023b). A Survey of Technology Selection
Approaches in Data Science Projects. AMCIS 2023
Proceedings.
Haertel, C., Staegemann, D., Daase, C., Pohl, M., Nahhas,
A., and Turowski, K. (2023c). MLOps in Data Science
Projects: A Review. 2023 IEEE International Confer-
ence on Big Data (BigData), pages 2396–2404.
Hevner, A. R., March, S. T., and Park, J. (2004). Design
Science in Information Systems Research. MIS Quar-
terly, Vol. 28(No. 1):75–106.
Holtkemper, M. and Beecks, C. (2024). Empowering Data
Science Teams: How Automation Frameworks Ad-
dress Competency Gaps Across Project Lifecycles.
In 2024 IEEE International Conference on Big Data
(BigData), pages 3134–3142. IEEE.
Hotz, N. (2024). Why Big Data Science & Data Analytics
Projects Fail.
Iriarte, C. and Bayona, S. (2020). IT projects success fac-
tors: a literature review. International Journal of In-
formation Systems and Project Management, 8(2):49–
78.
Janiesch, C., Zschech, P., and Heinrich, K. (2021). Ma-
chine learning and deep learning. Electronic Markets,
31(3):685–695.
Kazmierczak, J., Salama, K., and Huerta, V. (2024).
MLOps: Continuous delivery and automation
pipelines in machine learning.
Kreuzberger, D., K
¨
uhl, N., and Hirschl, S. (2023). Machine
Learning Operations (MLOps): Overview, Definition,
and Architecture. IEEE Access, 11:31866–31879.
Kutzias, D., Dukino, C., K
¨
otter, F., and Kett, H. (2023).
Comparative Analysis of Process Models for Data
Science Projects. Proceedings ofthe 15th Interna-
tional Conference on Agents and Artificial Intelli-
gence (ICAART 2023), pages 1052–1062.
Larsen, K. R., Lukyanenko, R., Mueller, R. M., Storey,
V. C., Parsons, J., VanderMeer, D., and Hovorka, D. S.
(2025). Validity in Design Science. MIS Quarterly.
Leek, J. T. and Peng, R. D. (2015). What is the ques-
tion? Mistaking the type of question being considered
is the most common error in data analysis. Science,
347(6228):1314–1315.
Makinen, S., Skogstrom, H., Laaksonen, E., and Mikkonen,
T. (2021). Who Needs MLOps: What Data Scientists
Seek to Accomplish and How Can MLOps Help? In
2021 IEEE/ACM 1st Workshop on AI Engineering -
Software Engineering for AI (WAIN), pages 109–112.
IEEE.
Martinez, I., Viles, E., and Olaizola, I. G. (2021). Data Sci-
ence Methodologies: Current Challenges and Future
Approaches. Big Data Research 24.
Mishra, A., Tripathi, A., and Khazanchi, D. (2022). A Pro-
posal for Research on the Application of AI/ML in
ITPM. International Journal of Information Technol-
ogy Project Management, 14(1):1–9.
KMIS 2025 - 17th International Conference on Knowledge Management and Information Systems
556