
force–torque sensor: Hardware and software. IEEE
Transactions on Industrial Electronics, 68:10207–
10217.
Hosseinabady, M. and Nunez-Yanez, J. L. (2020). A
Streaming Dataflow Engine for Sparse Matrix-Vector
Multiplication Using High-Level Synthesis. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 39(6):1272–1285.
Ibrahim, A., Osta, M., Alameh, M., Saleh, M., Chible, H.,
and Valle, M. (2018a). Approximate computing meth-
ods for embedded machine learning. In 2018 25th
IEEE International Conference on Electronics, Cir-
cuits and Systems (ICECS), pages 845–848.
Ibrahim, A., Pinna, L., and Valle, M. (2018b). Experimental
characterization of dedicated front-end electronics for
piezoelectric tactile sensing arrays. INTEGRATION-
THE VLSI JOURNAL, 63:266–272.
Jang, H., Bae, J., and Haninger, K. (2024). Soft finger grasp
force and contact state estimation from tactile sensors.
Kerner, S., Krugh, M., and Mears, L. (2022). Wear-
able shear and normal force sensing glove develop-
ment for real-time feedback on assembly line pro-
cesses. JOURNAL OF MANUFACTURING SYS-
TEMS, 64:668–675.
Lifa, A., Eles, P., and Peng, Z. (2015). On-the-fly en-
ergy minimization for multi-mode real-time systems
on heterogeneous platforms. Institute of Electrical and
Electronics Engineers Inc. Cited By :1Export Date: 10
March 2020.
Ma, D., Donlon, E., Dong, S., and Rodriguez, A. (2019).
Dense tactile force estimation using gelslim and in-
verse fem. In 2019 International Conference on
Robotics and Automation, ICRA 2019, volume 2019-
May, pages 5418–5424. Institute of Electrical and
Electronics Engineers Inc.
Magno, M., Ibrahim, A., Pullini, A., Valle, M., and Benini,
L. (2017). Energy efficient system for tactile data de-
coding using an ultra-low power parallel platform. In
2017 New Generation of CAS (NGCAS), pages 17–20.
Magno, M., Ibrahim, A., Pullini, A., Valle, M., and Benini,
L. (2018). An energy efficient e-skin embedded sys-
tem for real-time tactile data decoding. JOURNAL OF
LOW POWER ELECTRONICS, 14:101–109.
Mendoza-Pe
˜
naloza, J. and Mu
˜
noz, D. M. (2023). Hard-
ware implementation of a sliding detection algorithm
for robotic hands using force sensors. In 2023 36th
SBC/SBMicro/IEEE/ACM Symposium on Integrated
Circuits and Systems Design (SBCCI), pages 1–6.
Mohammadi, A., Kneale-Roby, H., Sadrafshari, S., Bienek,
M., Betts, J., and Shokrani, A. (2025). Hardware
implementation of convolutional neural network for
high-precision machining at the sensor edge. In 2025
IEEE International Symposium on Circuits and Sys-
tems (ISCAS), pages 1–5.
Pinto-Salamanca, M. L., Castellanos-Ramos, J., P
´
erez-
Holgu
´
ın, W. J., and Hidalgo-L
´
opez, J. A. (2023). An
estimation of triaxial forces from normal stress tactile
sensor arrays. Mechatronics, 96:103070.
Pinto-Salamanca, M.-L., P
´
erez-Holgu
´
ın, W.-J., and
Hidalgo-L
´
opez, J. A. (2024). Hardware Implementa-
tion for Triaxial Contact-Force Estimation from Stress
Tactile Sensor Arrays: An Efficient Design Approach.
Sensors, 24(23).
Plusquellic, J. (2017). The nature of hw/sw ii. hw/sw code-
sign w/ fpgas.
Racordon, D. and Buchs, D. (2016). Verifying multi-
core schedulability with data decision diagrams.
Cited By :1Export Date: 10 March 2020Correspon-
dence Address: Racordon, D.; Centre Universi-
taire d’Informatique, University of GenevaSwitzer-
land; email: dimitri.racordon@unige.ch.
Schaumont, P. R. (2013). A practical introduction to hard-
ware/software codesign. Springer US.
Schenck, W., Horst, M., Tiedemann, T., Gaulik, S., and
M
¨
oller, R. (2017). Comparing parallel hardware ar-
chitectures for visually guided robot navigation. Con-
currency Computation, 29.
Seminara, L., Capurro, M., and Valle, M. (2015). Tactile
data processing method for the reconstruction of con-
tact force distributions. MECHATRONICS, 27:28–37.
Skalicky, S. et al. (2013). High level synthesis: Where are
we? A case study on matrix multiplication. In 2013
Int. Conf. on Reconfigurable Computing and FPGAs
(ReConFig), pages 1–7.
Stallings, W. (2010). Computer Organization and Architec-
ture: Designing for Performance. Prentice Hall, 8th
edition.
Wasko, W., Albini, A., Maiolino, P., Mastrogiovanni, F.,
and Cannata, G. (2019). Contact Modelling and Tac-
tile Data Processing for Robot Skins. SENSORS,
19(4).
Xia, Y., Meng, Y., Xiang, S., Wang, J., and Yang, C. (2023).
An efficient hardware implementation of dilated con-
volution using a novel channel-equivalent decomposi-
tion method. In 2023 IEEE International Conference
on Integrated Circuits, Technologies and Applications
(ICTA), pages 172–173.
Xu, D., Hong, W., Hu, B., Zhang, T., Chen, D., Yan, Z.,
Yao, X., Zhang, X., Zhao, Y., Sun, T., Zhang, C.,
Pan, M., Ruan, X., Yan, R., Wang, J., and Guo, X.
(2024). River valley-inspired, high-sensitivity, and
rapid-response capacitive three-dimensional force tac-
tile sensor based on u-shaped groove structure. Smart
Materials and Structures, 33:35006.
Zhao, C., Liu, J., and Ma, D. (2025). ifem2.0: Dense 3-d
contact force field reconstruction and assessment for
vision-based tactile sensors. IEEE Transactions on
Robotics, 41:289–305.
Zhu, Z., Zhang, J., Zhao, J., Cao, J., Zhao, D., Jia, G.,
and Meng, Q. (2019). A hardware and software task-
scheduling framework based on cpu+fpga heteroge-
neous architecture in edge computing. IEEE Access,
7:148975–148988.
High-Level Synthesis of an Efficient Hardware Implementation for a Smart Tactile Sensing System
531