
DL for expressing basic constraint definitions and tax-
onomic relationships, while leveraging the Semantic
Web Rule Language (Lawan and Rakib, 2019) for
encoding complex regulatory rule patterns exceed-
ing OWL’s expressivity. This will be complemented
by Shapes Constraint Language rules for automated
compliance validation. The integration of these for-
mal logic frameworks will enable the ontology to sys-
tematically verify whether BPs satisfy regulatory re-
quirements by encoding both structural and semantic
constraints.
Finally, incorporating provenance metadata will
ensure traceability of each ontology element back to
its originating text segment in the source document.
This provenance will facilitate precise updates when
regulations evolve and ensure long-term reliability for
automated compliance verification applications.
REFERENCES
Chattoraj, S. and Joshi, K. P. (2024). MedReg-KG: Knowl-
edgeGraph for Streamlining Medical Device Regu-
latory Compliance. In 4th Workshop on Knowledge
Graphs and Big Data in Conjunction with IEEE Big-
Data 2024. IEEE.
Debattista, J., Auer, S., and Lange, C. (2016). Luzzu—a
methodology and framework for linked data quality
assessment. J. Data and Information Quality, 8(1).
Del Corro, L. and Gemulla, R. (2013). Clausie: clause-
based open information extraction. In Proceedings of
the 22nd international conference on World Wide Web,
pages 355–366.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings
of the 2019 NAACL HLT, pages 4171–4186. Associa-
tion for Computational Linguistics.
Gardent, C., Shimorina, A., Narayan, S., and Perez-
Beltrachini, L. (2017). Creating training corpora for
NLG micro-planners. In Barzilay, R. and Kan, M.-Y.,
editors, Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 179–188, Vancouver, Canada.
Association for Computational Linguistics.
Ghanem, H. and Cruz, C. (2025a). Fine-tuning or prompt-
ing on llms: evaluating knowledge graph construction
task. Frontiers in Big Data, 8:1505877.
Ghanem, H. and Cruz, C. (2025b). Fine-tuning or prompt-
ing on llms: evaluating knowledge graph construction
task. Frontiers in Big Data, Volume 8 - 2025.
Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). Ex-
ploring network structure, dynamics, and function us-
ing networkx. In Varoquaux, G., Vaught, T., and Mill-
man, J., editors, Proceedings of the 7th Python in Sci-
ence Conference, pages 11–15, Pasadena, CA USA.
Kolluru, K., Adlakha, V., Aggarwal, S., Chakrabarti, S.,
et al. (2020). Openie6: Iterative grid labeling and
coordination analysis for open information extraction.
arXiv preprint arXiv:2010.03147.
Kommineni, V. K., König-Ries, B., and Samuel, S. (2024).
From human experts to machines: An llm supported
approach to ontology and knowledge graph construc-
tion. arXiv preprint arXiv:2403.08345.
Lawan, A. and Rakib, A. (2019). The semantic web rule
language expressiveness extensions-a survey. arXiv
preprint arXiv:1903.11723.
Levenshtein, V. I. (1966). Binary codes capable of correct-
ing deletions, insertions and reversals. Soviet Physics
Doklady, 10:707.
Li, Z., Fan, S., Gu, Y., Li, X., Duan, Z., Dong, B.,
Liu, N., and Wang, J. (2024). Flexkbqa: A flexible
llm-powered framework for few-shot knowledge base
question answering. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 38(17):18608–18616.
Marteau, P.-F. (2018). Sequence covering similarity
for symbolic sequence comparison. arXiv preprint
arXiv:1801.07013.
Mihindukulasooriya, N., Tiwari, S., Enguix, C. F., and Lata,
K. (2023). Text2kgbench: A benchmark for ontology-
driven knowledge graph generation from text. In
Payne, T. R., Presutti, V., Qi, G., Poveda-Villalón, M.,
Stoilos, G., Hollink, L., Kaoudi, Z., Cheng, G., and
Li, J., editors, The Semantic Web – ISWC 2023, pages
247–265, Cham. Springer Nature Switzerland.
Papaluca, A., Krefl, D., Rodríguez Méndez, S., Lensky, A.,
and Suominen, H. (2024). Zero- and few-shots knowl-
edge graph triplet extraction with large language mod-
els. In Biswas, R., Kaffee, L.-A., Agarwal, O., Min-
ervini, P., Singh, S., and de Melo, G., editors, Pro-
ceedings of the 1st Workshop on Knowledge Graphs
and Large Language Models (KaLLM 2024), pages
12–23, Bangkok, Thailand. Association for Computa-
tional Linguistics.
Petroni, F., Rocktäschel, T., Riedel, S., Lewis, P., Bakhtin,
A., Wu, Y., and Miller, A. (2019). Language models
as knowledge bases? In Inui, K., Jiang, J., Ng, V.,
and Wan, X., editors, Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association for
Computational Linguistics.
Razniewski, S., Yates, A., Kassner, N., and Weikum, G.
(2021). Language models as or for knowledge bases.
CoRR, abs/2110.04888.
Tamašauskait
˙
e, G. and Groth, P. (2023). Defining a knowl-
edge graph development process through a systematic
review. ACM Transactions on Software Engineering
and Methodology, 32(1):1–40.
Vanapalli, K., Kilaru, A., Shafiq, O., and Khan, S.
(2025). Unifying large language models and knowl-
edge graphs for efficient regulatory information re-
trieval and answer generation. COLING 2025,
page 22.
Triples-Driven Ontology Construction with LLMs for Urban Planning Compliance
191