modules, with endurance testing incorporating power
consumption measurements. Limitations in EDF
efficiency and flight time will be addressed through
revised propulsion strategies and adaptive energy
management.
REFERENCES
Akhloufi, T., et al. (2020). Optical flow-based motion
analysis for search and rescue. Computer Vision and
Image Understanding, 190, 102–118. https://doi.org/1
0.1016/j.cviu.2019.102847
Dudek, J., & Jenkin, M. (2010). Computational principles
of mobile robotics. Cambridge University Press.
Ingle, P., & Chunekar, R. (2016). Human detection in
disaster zones using PIR and ultrasonic sensors.
International Journal of Advanced Research in
Electronics and Communication Engineering, 5(7),
1201–1205.
Joseph, L. (2018). Learning robotics using Python (2nd
ed.). Packt Publishing.
Kalaboina, K., Mandala, S., & Kumar, M. S. V. (2018).
Smart human detection robot using PIR and ultrasonic
sensors. International Journal of Engineering Research
& Technology, 6(13), 141–145.
Kim, S., et al. (2018). Biologically inspired wall-climbing
robots. Annual Review of Control, Robotics, and
Autonomous Systems, 1, 365–391. https://doi.org/
10.1146/annurev-control-060117-105058
Lee, Y., et al. (2020). Fireproofing of UAV airframes using
ceramic insulation. Journal of Intelligent & Robotic
Systems, 97(2), 123–134. https://doi.org/10.1007/s1
0846-019-01076-7
Li, C., et al. (2017). Gecko-inspired climbing UAVs with
adhesive microstructures. Bioinspiration &
Biomimetics, 12(4). https://doi.org/10.1088/1748-319
0/aa7e59
Li, Y., Gao, J., & Zhang, H. (2021). AI-driven UAV
reconnaissance for post-disaster damage assessment.
IEEE Transactions on Humanitarian Technology, 9(3),
145–152. https://doi.org/10.1109/THT.2021.3076548
Mishra, N. (n.d.). Emergency response and search and
rescue. Retrieved from https://www.nikhileshmis
hra.com/emergency-response-and-search-and-rescue/
Mulgaonkar, C., et al. (2016). Power and weight
optimization for micro aerial vehicles. IEEE Robotics
& Automation Magazine, 23(4), 78–89. https://doi.org/
10.1109/MRA.2016.2601932
Murphy, R. (2004). Trial by fire: Lessons from rescue
robotics. IEEE Robotics & Automation Magazine,
11(3), 50–61. https://doi.org/10.1109/MRA.2004.133
7848
Myeong, H., & Myung, H. (2020). A bio-inspired quadrotor
with tiltable rotors for improved wall-perching and
climbing. IEEE/ASME Transactions on Mechatronics,
25(4), 1809–1819. https://doi.org/10.1109/TMECH.
2020.2969117
Patel, A., Deshmukh, R., & Srinivasan, M. (2020). Deep
learning-enabled UAVs for victim detection in disaster
zones. In International Conference on Intelligent
Systems (pp. 231–238). IEEE.
Redmon, J., et al. (2018). YOLOv3: An incremental
improvement. arXiv:1804.02767. https://arxiv.org/a
bs/1804.02767
Siegwart, R., Nourbakhsh, I. R., & Scaramuzza, D. (2011).
Introduction to autonomous mobile robots (2nd ed.).
MIT Press.
Sharma, A., & Mahapatra, A. (2021). Breath detection in
disaster victims using vision-based optical flow.
Procedia Computer Science, 186, 89–96. https://doi.
org/10.1016/j.procs.2021.04.103
Spenko, M., et al. (2012). Electroadhesion technology for
robotic perching. IEEE Transactions on Robotics,
28(5), 1079–1089. https://doi.org/10.1109/TRO.2012.
2208773
Sun, L., et al. (2021). Quadcopters with active suction
mechanisms for wall traversal. IEEE Access, 9, 11341–
11352. https://doi.org/10.1109/ACCESS.2021.3050234
Tan, R., et al. (2021). Thermal survivability of UAVs in
industrial fires. Sensors, 21(18), 1–14. https://doi.org/1
0.3390/s21186102
TheTechArtist. (n.d.). Robots for hazardous environments.
Retrieved from https://thetechartist.com/robots-for-
hazardous-environments/
Wang, H., et al. (2021). Magnetic wall-climbing drones for
structural inspection. Automation in Construction, 133,
103–122. https://doi.org/10.1016/j.autcon.2021.103982
Zhang, F., et al. (2020). MediaPipe face mesh: A real-time
face landmark system. Google AI Blog. https://ai.
googleblog.com/2020/08/mediapipe-facemesh.html
Zhang, W., et al. (2021). Fire-resistant UAV design with
silica-based aerogels. Materials Today: Proceedings,
36, 82–88. https://doi.org/10.1016/j.matpr.2020.04.373