
mation accuracy and robustness to abrupt behavioral
changes, particularly in lateral and longitudinal posi-
tions, velocity, and yaw angle.
The proposed trajectory prediction framework
lays the groundwork for more advanced decision-
making modules. As a future extension, the pre-
dicted trajectories will be integrated into a risk-aware
decision-making system during the insertion phase
into the roundabout. This integration will subse-
quently be extended to the circulation and exit phases.
Such an approach will enable proactive navigation
strategies and enhance safety in complex, dynamic
environments, where anticipating the behavior of sur-
rounding vehicles is critical.
REFERENCES
Altch
´
e, F. and de La Fortelle, A. (2017). An lstm network
for highway trajectory prediction. In 2017 IEEE 20th
International Conference on Intelligent Transporta-
tion Systems (ITSC), pages 353–359. IEEE.
Arezki, H., Zemouche, A., Alessandri, A., and Bagner-
ini, P. (2023). Lmi design procedure for incremen-
tal input/output-to-state stability in nonlinear systems.
IEEE Control Systems Letters, 7:3403–3408.
Bellingard, K. (2023). Prise de d
´
ecision s
ˆ
ure et robuste
pour les v
´
ehicules autonomes en milieu urbain haute-
ment dynamique et contraint. Th
`
ese de doctorat, Uni-
versit
´
e de Technologie de Compi
`
egne.
Benloucif, M. A. (2018). Coop
´
eration homme-machine
multi-niveau entre le conducteur et un syst
`
eme
d’automatisation de la conduite. Th
`
ese de doctorat,
Universit
´
e de Valenciennes et du Hainaut-Cambr
´
esis.
ffNNT : 2018VALE0012, fftel-01860221f.
Brannstrom, M., Coelingh, E., and Sj
¨
oberg, J. (2010).
Model-based threat assessment for avoiding arbitrary
vehicle collisions. IEEE Transactions on Intelligent
Transportation Systems, 11(3):658–669.
Du Toit, N. E. and Burdick, J. W. (2011). Probabilistic col-
lision checking with chance constraints. IEEE Trans-
actions on Robotics, 27(4):809–815.
Firl, J., St
¨
ubing, H., Huss, S. A., and Dietmayer, K. (2012).
Predictive maneuver evaluation for enhancement of
car-to-x mobility data. In 2012 IEEE Intelligent Ve-
hicles Symposium, pages 558–564. IEEE.
Guo, C., Sentouh, C., Soualmi, B., Hau
´
e, J.-B., and Popieul,
J.-C. (2018). Adaptive vehicle longitudinal trajectory
prediction for automated highway driving. In IEEE
Intelligent Vehicles Symposium (IV).
Gustafsson, F. (2010). Particle filter theory and practice
with positioning applications. IEEE Aerospace and
Electronic Systems Magazine, 25(7):53–82.
Huang, Y., Du, J., Yang, Z., Zhou, Z., Zhang, L., and Chen,
H. (2022). A survey on trajectory-prediction methods
for autonomous driving. IEEE Transactions on Intel-
ligent Vehicles, 7(3):258–277.
Kuwata, Y., Teo, J., Karaman, S., Fiore, G., Frazzoli, E.,
and How, J. P. (2008). Motion planning in complex
environments using closed-loop prediction. In AIAA
Guidance, Navigation and Control Conference and
Exhibit.
Lef
`
evre, S., Vasquez, D., and Laugier, C. (2014). A sur-
vey on motion prediction and risk assessment for in-
telligent vehicles. Robotics and Autonomous Systems,
58(9):1348–1359.
Oudainia, M. R. (2023). Contr
ˆ
ole partag
´
e adaptatif et
´
elaboration de strat
´
egies de conduite personnalis
´
ees
pour le v
´
ehicule automatis
´
e : une approche par
apprentissage progressif. Th
`
ese de doctorat, Uni-
versit
´
e Polytechnique Hauts-de-France. ffNNT :
2023UPHF0038, fftel-04466406f.
Park, S. H., Kim, B., Kang, C. M., Chung, C. C., and
Choi, J. W. (2018). Sequence-to-sequence prediction
of vehicle trajectory via lstm encoder-decoder archi-
tecture. In 2018 IEEE Intelligent Vehicles Symposium
(IV), pages 1672–1678. IEEE.
Rajamani, R., Jeon, W., Movahedi, H., and Zemouche, A.
(2020). Vehicle motion estimation using a switched
gain nonlinear observer. In 2020 American Control
Conference (ACC), pages 3047–3052. IEEE.
Schubert, R., Richter, E., and Wanielik, G. (2008). Com-
parison and evaluation of advanced motion models for
vehicle tracking. In Proceedings of the 11th Interna-
tional Conference on Information Fusion.
Wang, Z., Liu, X., and Wu, Z. (2023). Design of unsignal-
ized roundabouts driving policy of autonomous vehi-
cles using deep reinforcement learning. World Elec-
tric Vehicle Journal, 14(2):52.
Wiest, J., Hoffken, M., Kreßel, U., and Dietmayer, K.
(2012). Probabilistic trajectory prediction with gaus-
sian mixture models. In 2012 IEEE Intelligent Vehi-
cles Symposium, pages 141–146. IEEE.
ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics
386