Future work aims at investigating schemes of par-
titioning without a common center point, and the cou-
pling of severa l oscillators of the proposed type.
ACKNOWLEDGEMENTS
Partial financial support by the G e rman Research
Foundation (DFG) through the Research Training
Group Biological Clocks on Multiple Time Scales
(GRK 2749/1) is gratefully acknowledged.
REFERENCES
Atherton, D. and Dorrah, H. (1980). A survey on non-
linear oscillations. International Journal of Control,
31(6):1041–1105.
Bernardo, M., Budd, C., Champneys, A. R., and Kowal-
czyk, P. (2008). Piecewise-smooth dynamical sys-
tems: theory and applications, volume 163. Springer
Science & Business Media.
Coll, B., Gasull, A., and Prohens, R. (2001). Degener-
ate hopf bifurcations in discontinuous planar systems.
Journal of mathematical analysis and applications,
253(2):671–690.
Demidovich, B. P. (1967). Lectures on stability theory.
D¨orfler, F. and Bullo, F. (2014). Synchronization in com-
plex networks of phase oscillators: A survey. Auto-
matica, pages 1539–1564.
Freire, E., Ponce, E., Rodrigo, F., and Torres, F. (1998). Bi-
furcation sets of continuous piecewi se linear systems
with two zones. International Journal of Bifurcation
and Chaos, 8(11):2073–2097.
Gaiko, V. A . (2011). Multiple limit cycle bifurcations of the
fitzhugh–nagumo neuronal model. Nonlinear Analy-
sis: Theory, Methods & Applications, 74(18):7532–
7542.
Gonze, D. and Ruoff, P. (2021). The goodwin oscillator and
its legacy. Acta Biotheoretica, 69(4):857–874.
Hanke, N., Liu, Z., and Stursberg, O. (2024). Approxima-
tion of limit cycles by using planar switching affine
systems with guarantees for uniqueness and stability.
In European Control Conference, pages 1460–1465.
Hanke, N., Liu, Z., and Stursberg, O. (2025). Approxima-
tion of planar periodic behavior from data with sta-
bility guarantees using switching affine systems. In
American Control Conference, pages 1944–1949.
Hanke, N. and Stursberg, O. (2023). On the design of limit
cycles of planar switching affine systems. In European
Control Conference, pages 2251–2256.
Higham, N. J. (2009). The scaling and squaring method
for the matrix exponential revisited. SIAM review,
51(4):747–764.
Joshi, S. K., Sen, S., and Kar, I. N . (2016). Synchronization
of coupled oscillator dynamics. I FAC-PapersOnLine,
49(1):320–325.
Kai, T. and Masuda, R. (2012). Limit cycle synthesis of
multi-modal and 2-dimensional piecewise affine sys-
tems. Mathematical and Computer Modelling, 55(3-
4):505–516.
Kenney, C. S. and Laub, A. J. (1998). A schur–fr´echet al-
gorithm for computing the logarithm and exponential
of a matrix. SIAM journal on matrix analysis and ap-
plications, 19(3):640–663.
Kudryashov, N. A. (2021). The generalized duffing oscil-
lator. Communications in Nonlinear Science and Nu-
merical Simulation, 93:105526.
Kuramoto, Y. (2005). Self-entrainment of a population
of coupled non-linear oscillators. In International
symposium on mathematical problems in theoreti-
cal physics. Kyoto University, Japan, pages 420–422.
Springer.
Lauer, F., Bloch, G., and Vidal, R. (2011). A continuous op-
timization framework for hybrid system identification.
Automatica, 47(3):608–613.
Llibre, J., Ponce, E., and Torres, F. (2008). On the exis-
tence and uniqueness of limit cycles in li´enard differ-
ential equations allowing discontinuities. Nonlinear-
ity, 21(9):2121.
Lum, R. and Chua, L. O. (1991). Global properties of con-
tinuous piecewise linear vector fields. part i: Simplest
case in R
2
. International journal of circuit theory and
applications, 19(3):251–307.
Mirollo, R. E. and Strogatz, S. H. (1990). Synchronization
of pulse-coupled biological oscillators. SIAM Journal
on Applied Mathematics, 50(6):1645–1662.
Paoletti, S., Juloski, A. L., Ferrari-Trecate, G., and Vidal,
R. (2007). Identification of hybrid systems a tutorial.
European journal of control, 13(2-3):242–260.
Pavlov, A., Pogromsky, A., Van De Wouw, N., and Nijmei-
jer, H. (2007). On convergence properties of piece-
wise affine systems. International Journal of Control,
80(8):1233–1247.
Peterchev, A. V. and Sanders, S. R. (2003). Quantiza-
tion resolution and limit cycling in digitally controlled
pwm converters. IEEE Transactions on Power Elec-
tronics, 18(1):301–308.
Teplinsky, A. and Feely, O. (2008). Limi t cycles in a mems
oscillator. IEEE Transactions on Circuits and Systems
II: Express Briefs, 55(9):882–886.
Werckenthin, A., Huber, J., Arnold, T., Koziarek, S., Plath,
M. J., Plath, J. A., Stursberg, O., Herzel, H., and
Stengl, M. (2020). Neither per, nor tim1, nor cry2
alone are essential components of the molecular circa-
dian clockwork in the madeira cockroach. PLoS One,
15(8):e0235930.
Xu, Y. and Luo, A. C. (2019). Fr equency-amplitude char-
acteristics of periodic motions in a periodically forced
van der pol oscillator. The European Physical Journal
Special Topics, 228(9):1839–1854.