
Dam, S. K., Hong, C. S., Qiao, Y., and Zhang, C. (2024).
A complete survey on LLM-based AI Chatbots. arXiv
2406.16937.
E. Altarawneh, E., Jenkin, M., and Scott MacKenzie, I.
(2021). An extensible cloud based avatar: Imple-
mentation and evaluation. In Brooks, A. L., Brah-
man, S., Kapralos, B., Nakajima, A., Tyerman, J., and
Jain, L. C., editors, Recent Advances in Technologies
for Inclusive Well-Being: Virtual Patients, Gamifica-
tion and Simulation, pages 503–522. Springer Inter-
national Publishing, Cham.
Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y.,
Sun, J., Wang, M., and Wang, H. (2024). Retrieval-
augmented generation for large language models: A
survey. arXiv 2312.10997.
Ghamati, K., Banitalebi Dehkordi, M., and Zaraki, A.
(2025). Towards AI-powered applications: The de-
velopment of a personalised LLM for HRI and HCI.
Sensors, 25.
Hall, E. T. (1966). The Hidden Dimension. Anchor Books.
Jeong, H., Lee, H., Kim, C., and Shin, S. (2024). A sur-
vey of robot intelligence with large language models.
Appl. Sci., 14:8868.
Kim, C. Y., Lee, C. P., and Mutlu, B. (2024). Understanding
large-language model LLM-powered Human-Robot
Interaction. In Proc. ACM/IEEE International Con-
ference on Human-Robot Interaction (HRI), page
371–380.
Luo, J., Li, T., Wu, D., Jenkin, M., Liu, S., and Dudek,
G. (2024). Hallucination detection and hallucination
mitigation: An investigation. arXIV 2401.08358.
Macenski, S., Foote, T., Gerkey, B., Lalancette, C., and
Woodall, W. (2022). Robot operating system 2: De-
sign, architecture, and uses in the wild. Science
Robotics, 7:eabm6074.
Mower, C. E., Wan, Y., Yu, H., Grosnit, A., Gonzalez-
Billandon, J., Zimmer, M., Wang, J., Zhang, X., Zhao,
Y., Zhai, A., Liu, P., Palenicek, D., Tateo, D., Cadena,
C., Hutter, M., Peters, J., Tian, G., Zhuang, Y., Shao,
K., Quan, X., Hao, J., Wang, J., and Bou-Ammar, H.
(2024). ROS-LLM: A ROS framework for embod-
ied AI with task feedback and structured reasoning.
arXiv:2406.19741.
Poria, S., Hazarika, D., Majumder, N., Naik, G., Cambria,
E., and Mihalcea, R. (2018). Meld: A multimodal
multi-party dataset for emotion recognition in conver-
sations. arXiv preprint arXiv:1810.02508.
Schoenenberg, K., Raake, A., and Koeppe, J. (2014). Why
are you so slow? – misattribution of transmission de-
lay to attributes of the conversation partner at the far-
end. International Journal of Human-Computer Stud-
ies, 72(5):477–487.
Shoa, A. and Friedman, D. (2025). Milo: an LLM-based
virtual human open-source platform for extended re-
ality. Frontiers in Virtual Reality, 6.
Singh, S., Singh, D., and Yadav, V. (2020). Face recog-
nition using HOG feature extraciton and SVM classi-
fiere. Int. J. of Emerging Trends in Engineering Re-
search, 8.
Soleymani, M., Garcia, D., Jou, B., Schuller, B., Chang, S.-
F., and Pantic, M. (2017). A survey of multimodal sen-
timent analysis. Image and Vision Computing, 65:3–
14.
Technologies, R. C. (2005). Roscribe:
Create ROS packages using LLMs.
https://github.com/RoboCoachTechnologies/ROScribe,
accessed Jun-30-2025.
Tripathi, S., Tripathi, S., and Beigi, H. (2019). Multi-modal
emotion recognition on IEMOCAP dataset using deep
learning. arXiv 1804.05788.
Wang, C., Hasler, S., Tanneberg, D., Ocker, F., F. Jou-
blin, F., Ceravola, A., Deigmoeller, J., and Gienger,
M. (2024). LaMI: Large Language Models for Multi-
Modal Human-Robot Interaction. In Extended Ab-
stracts of the CHI Conference on Human Factors in
Computing Systems, page 1–10. ACM.
Wang, J., Shi, E., Hu, H., Ma, C., Liu, Y., Wang, X., Yao, Y.,
Liu, X., Ge, B., and Zhang, S. (2025). Large language
models for robotics: Opportunities, challenges, and
perspectives. Journal of Automation and Intelligence,
4:52–64.
Weizenbaum, J. (1966). Eliza—a computer program for
the study of natural language communication between
man and machine. Commun. ACM, page 36–45.
Wigdor, N., de Greeff, J., Looije, R., and Neerincx, M. A.
(2016). How to improve human-robot interaction with
conversational fillers. In 2016 25th IEEE Interna-
tional Symposium on Robot and Human Interactive
Communication (RO-MAN), pages 219–224.
Zhang, Z., Tsiakas, K., and Schneegass, C. (2024). Explain-
ing the wait: How justifying chatbot response delays
impact user trust. ACM Conversational User Inter-
faces 2024, page 1–16.
Leveraging ROS to Support LLM-Based Human-Robot Interaction
409