
ACKNOWLEDGEMENTS
The authors gratefully acknowledge the support pro-
vided by the Foundation for Science and Technol-
ogy (FCT/MCTES) within the scope of the Associ-
ated Laboratory ARISE (LA/P/0112/2020), the R&D
Unit SYSTEC through Base (UIDB/00147/2020) and
Programmatic (UIDP/00147/2020) funds
REFERENCES
Burke, R. (2002). Hybrid recommender systems: Survey
and experiments. User modeling and user-adapted in-
teraction, 12(4):331–370.
Dalkir, K. (2017). Knowledge Management in Theory and
Practice. MIT Press, 3rd edition.
Dhairya, Hrishikesh, J., Sonu, G. P., Vaishnavi, D., Sana-
pala, S., and Pallavi, L. (2024). Skillify: En-
hanced Learning Management System Using Genera-
tive AI. In 2024 7th International Conference on Cir-
cuit Power and Computing Technologies (ICCPCT),
volume 1, pages 1527–1532.
G. M., D., Goudar, R. H., Kulkarni, A. A., Rathod, V. N.,
and Hukkeri, G. S. (2024). A digital recommendation
system for personalized learning to enhance online ed-
ucation: A review. IEEE Access, 12:34019–34041.
Gragera, A. and Suppakitpaisarn, V. (2016). Semimetric
properties of sørensen-dice and tversky indexes. In
Kaykobad, M. and Petreschi, R., editors, WALCOM:
Algorithms and Computation, pages 339–350, Cham.
Springer International Publishing.
He, Z., Yu, J., and Guo, B. (2022). Execution time predic-
tion for cypher queries in the neo4j database using a
learning approach. Symmetry, 14(1).
Hu, H., Ma, X., Pan, H., Zhang, H., and Gu, F. (2021). Re-
search on Intelligent Recommendation System Based
on Knowledge Management. In 2021 International
Conference on Intelligent Computing, Automation and
Applications (ICAA), pages 195–198.
Imamah, Laili Yuhana, U., Djunaidy, A., and Purnomo,
M. H. (2024). Development of Dynamic Personalized
Learning Paths Based on Knowledge Preferences and
the Ant Colony Algorithm. IEEE Access, 12:144193–
144207. Conference Name: IEEE Access.
Konda, M. (2024). Elasticsearch in action. Simon and
Schuster.
Kopeyev, Z., Mubarakov, A., Kultan, J., Aimicheva, G., and
Tuyakov, Y. (2020). Using a personalized learning
style and google classroom technology to bridge the
knowledge gap on computer science. International
Journal of Emerging Technologies in Learning (IJET),
15(2):218–229.
Liu, J., Luan, M., and Jiang, N. (2024a). Personalized aca-
demic communication recommendation system based
on knowledge graph. In 2024 5th International Con-
ference on Electronic Communication and Artificial
Intelligence (ICECAI), pages 610–614.
Liu, J., Luan, M., and Jiang, N. (2024b). Personalized
Academic Communication Recommendation System
Based on Knowledge Graph. In 2024 5th Interna-
tional Conference on Electronic Communication and
Artificial Intelligence (ICECAI), pages 610–614.
Lops, P., Gemmis, M. d., and Semeraro, G. (2011). Content-
based recommender systems: State of the art and
trends. In Recommender Systems Handbook, pages
73–105. Springer.
Lu, P. and Feng, X. (2024). Personalized Recommenda-
tion Algorithm in AI-Assisted Learning System. In
2024 6th International Conference on Communica-
tions, Information System and Computer Engineering
(CISCE), pages 1289–1294. ISSN: 2833-2423.
Mardan, A., Mardan, and Corrigan (2018). Practical Node.
js. Springer.
Markchom, T., Liang, H., and Ferryman, J. (2023). Re-
view of explainable graph-based recommender sys-
tems. ACM Computing Surveys.
Obe, R. O. and Hsu, L. S. (2017). PostgreSQL: up and run-
ning: a practical guide to the advanced open source
database. ” O’Reilly Media, Inc.”.
Pinto, R., Pinheiro, J., Gonc¸alves, G., and Ribeiro, A.
(2023). Towards industry 5.0: A capacitation ap-
proach for upskilling and technology transfer. In
Mehmood, R., Alves, V., Prac¸a, I., Wikarek, J., Parra-
Dom
´
ınguez, J., Loukanova, R., de Miguel, I., Pinto,
T., Nunes, R., and Ricca, M., editors, Distributed
Computing and Artificial Intelligence, Special Ses-
sions I, 20th International Conference, pages 342–
351, Cham. Springer Nature Switzerland.
Pinto, R.,
ˇ
Zilka, M., Zanoli, T., Kolesnikov, M. V., and
Gonc¸alves, G. (2024). Enabling professionals for in-
dustry 5.0: The self-made programme. In 5th Interna-
tional Conference on Industry 4.0 and Smart Manu-
facturing (ISM 2023), volume 232, pages 2911–2920.
Ricci, F., Rokach, L., and Shapira, B. (2011). Introduc-
tion to recommender systems handbook, pages 1–35.
Springer.
Sahu, S. S., Kumar, R., Sahoo, S., Kumar, B., and Mo-
hanta, P. (2024). Machine Learning-Enabled Inte-
grated Information Platform for Educational Univer-
sities, chapter 2, pages 29–47. John Wiley & Sons,
Ltd.
Shatnawi, H. and Saquer, J. (2024). Encoding feature mod-
els in neo4j graph database. In Proceedings of the
2024 ACM Southeast Conference, ACMSE ’24, page
157–166, New York, NY, USA. Association for Com-
puting Machinery.
Urdaneta-Ponte, M. C., Mendez-Zorrilla, A., and
Oleagordia-Ruiz, I. (2021). Recommendation
systems for education: Systematic review. Electron-
ics, 10(14).
Webber, J. and Robinson, I. (2018). A Programmatic Intro-
duction to Neo4j. Addison-Wesley Professional, 1st
edition.
WEBIST 2025 - 21st International Conference on Web Information Systems and Technologies
446