scalable, while most plasmonic responses occur in the 
visible spectrum, limiting deep-tissue penetration in 
biomedicine.  Additionally,  comprehensive 
biocompatibility  assessments—encompassing  long-
term  stability,  toxicity  profiles,  and  clearance 
mechanisms—are  underdeveloped.  In  vitro  models 
often  fail  to  recapitulate  in  vivo  complexities, 
necessitating  sophisticated  in  vivo  studies  to 
characterize  size/shape-dependent  biodistribution 
and enantioselective biological effects. 
 To  address  these  challenges,  future  research 
should  focus  on  developing  Chiral  AuNPs  with 
enhanced  near-infrared  (NIR)  chiroptical  activity, 
advancing surface  functionalization for non-toxicity 
and  targeted  specificity,  elucidating  cellular  uptake 
mechanisms,  and  fostering  interdisciplinary 
collaboration  to  bridge  fundamental  synthesis  with 
translational precision medicine applications. Despite 
these  hurdles,  the  dynamic  field  of  Chiral  AuNP 
research  continues  to  hold  immense  potential  for 
breakthroughs  in  biochemical  research  and  clinical 
practice. 
ACKNOWLEDGEMENTS 
All the authors contributed  equally and their names 
were listed in alphabetical order. 
REFERENCES 
Cui, J., 2015. Preparation and catalytic properties of chiral 
gold  nanomaterials.  Master’s thesis,  Yangzhou 
University. 
Gao, F., Sun, M., Ma, W., Wu, X., Liu, L., Kuang, H., Xu, 
C.,  2017.  A  singlet  oxygen  generating  agent  by 
chirality‐dependent  plasmonic  shell‐satellite 
nanoassembly. Advanced Materials, 29(18): 1606864. 
Kang, Y. J., Oh, J. W., Kim, Y. R., Kim, J. S., Kim, H., 
2010.  Chiral  gold  nanoparticle-based  electrochemical 
sensor  for  enantioselective  recognition  of  3,4-
dihydroxyphenylalanine.  Chemical Communications, 
46(31): 5665–5667. 
Kneer, L. M., Roller, E. M., Besteiro, L. V., Schreiber, R., 
Govorov, A. O., Liedl, T., 2018. Circular dichroism of 
chiral  molecules  in  DNA-assembled  plasmonic 
hotspots. ACS Nano, 12(9): 9110–9115. 
Lee, H. E., Ahn, H. Y., Mun, J., Lee, Y. Y., Kim, M., Cho, 
N.  H.,  Nam,  K.  T.,  2018.  Amino-acid-  and  peptide-
directed  synthesis  of  chiral  plasmonic  gold 
nanoparticles. Nature, 556(7701): 360–365. 
Li, F., Wu, F., Luan, X., Yuan, Y., Zhang, L., Xu, G., Niu, 
W.,  2022.  Highly  enantioselective  electrochemical 
sensing  based  on  helicoid  Au  nanoparticles  with 
intrinsic chirality. Sensors and Actuators B: Chemical, 
362: 131757. 
Liu,  N.,  Ding,  B.,  2012.  Rolling  up  gold  nanoparticle-
dressed  DNA  origami  into  three-dimensional 
plasmonic chiral nanostructures. 
Mo, R., Xu, L., Fu, P., Wu, X., Kuang, H., Liu, L., Xu, C., 
2016.  Scissor-like  chiral  metamolecules  for  probing 
intracellular telomerase activity. Advanced Functional 
Materials, 26(40): 7352–7358. 
Negrín-Montecelo, Y., Movsesyan, A., Gao, J., Burger, S., 
Wang,  Z.  M.,  Nlate,  S.,  Correa-Duarte,  M.  A.,  2022. 
Chiral  generation  of  hot  carriers  for  polarization-
sensitive  plasmonic  photocatalysis.  Journal of the 
American Chemical Society, 144(4): 1663–1671. 
Rothemund, P. W., 2006. Folding DNA to create nanoscale 
shapes and patterns. Nature, 440(7082): 297–302. 
Sun, X., Wang, X., Wang, W., Sun, M., Choi, W. J., Kim, 
J.  Y.,  Xu,  C.,  2022.  Enantiomer-dependent 
immunological response to chiral nanoparticles. Nature, 
601(7893): 366–373. 
Tan,  L.,  Yu,  S.  J.,  Jin,  Y.,  Li,  J.,  Wang,  P.  P.,  2022. 
Inorganic  chiral  hybrid  nanostructures  for  tailored 
chiroptics  and  chirality-dependent  photocatalysis. 
Angewandte Chemie International Edition,  61(24): 
e202112400. 
Urban, M. J., Dutta, P. K., Wang, P., Duan, X., Shen, X., 
Ding,  B.,  Liu,  N.,  2016.  Plasmonic  toroidal 
metamolecules assembled by DNA origami. Journal of 
the American Chemical Society, 138(17): 5495–5498. 
Weng, X. K., Yuan, S. F., Lin, Z. W., Wang, Q. M., 2014. 
A chiral gold nanocluster Au₂₀ protected by tetradentate 
phosphine  ligands.  Angewandte Chemie,  126(11): 
2967–2970. 
Wang,  Y.  L.,  2023.  Synthesis  and  near-infrared 
photothermal properties of chiral gold nanostructures. 
Master’s thesis, Henan University. 
Xu,  C.,  2025.  Colorimetric  detection  of  drug  molecule 
enantiomers  using  chiral  gold  nanoprobe.  Journal of 
Chemical Education of Higher Institutions
, 46(2): 78–
85. 
Zhang, C., Gao, X., Li, H., Ji, Y., Cai, R., Hu, Z., Wu, X., 
2023. Regulation of chirality transfer and amplification 
from chiral cysteine to gold nanorod assemblies using 
nonchiral surface ligands. Advanced Optical Materials, 
11(18): 2202804. 
Zhang, H., Govorov, A. O., 2013. Giant circular dichroism 
of a molecule in a region of strong plasmon resonances 
between  two  neighboring  gold  nanocrystals.  Physical 
Review B: Condensed Matter and Materials Physics, 
87(7): 075410.