scalable, while most plasmonic responses occur in the
visible spectrum, limiting deep-tissue penetration in
biomedicine. Additionally, comprehensive
biocompatibility assessments—encompassing long-
term stability, toxicity profiles, and clearance
mechanisms—are underdeveloped. In vitro models
often fail to recapitulate in vivo complexities,
necessitating sophisticated in vivo studies to
characterize size/shape-dependent biodistribution
and enantioselective biological effects.
To address these challenges, future research
should focus on developing Chiral AuNPs with
enhanced near-infrared (NIR) chiroptical activity,
advancing surface functionalization for non-toxicity
and targeted specificity, elucidating cellular uptake
mechanisms, and fostering interdisciplinary
collaboration to bridge fundamental synthesis with
translational precision medicine applications. Despite
these hurdles, the dynamic field of Chiral AuNP
research continues to hold immense potential for
breakthroughs in biochemical research and clinical
practice.
ACKNOWLEDGEMENTS
All the authors contributed equally and their names
were listed in alphabetical order.
REFERENCES
Cui, J., 2015. Preparation and catalytic properties of chiral
gold nanomaterials. Master’s thesis, Yangzhou
University.
Gao, F., Sun, M., Ma, W., Wu, X., Liu, L., Kuang, H., Xu,
C., 2017. A singlet oxygen generating agent by
chirality‐dependent plasmonic shell‐satellite
nanoassembly. Advanced Materials, 29(18): 1606864.
Kang, Y. J., Oh, J. W., Kim, Y. R., Kim, J. S., Kim, H.,
2010. Chiral gold nanoparticle-based electrochemical
sensor for enantioselective recognition of 3,4-
dihydroxyphenylalanine. Chemical Communications,
46(31): 5665–5667.
Kneer, L. M., Roller, E. M., Besteiro, L. V., Schreiber, R.,
Govorov, A. O., Liedl, T., 2018. Circular dichroism of
chiral molecules in DNA-assembled plasmonic
hotspots. ACS Nano, 12(9): 9110–9115.
Lee, H. E., Ahn, H. Y., Mun, J., Lee, Y. Y., Kim, M., Cho,
N. H., Nam, K. T., 2018. Amino-acid- and peptide-
directed synthesis of chiral plasmonic gold
nanoparticles. Nature, 556(7701): 360–365.
Li, F., Wu, F., Luan, X., Yuan, Y., Zhang, L., Xu, G., Niu,
W., 2022. Highly enantioselective electrochemical
sensing based on helicoid Au nanoparticles with
intrinsic chirality. Sensors and Actuators B: Chemical,
362: 131757.
Liu, N., Ding, B., 2012. Rolling up gold nanoparticle-
dressed DNA origami into three-dimensional
plasmonic chiral nanostructures.
Mo, R., Xu, L., Fu, P., Wu, X., Kuang, H., Liu, L., Xu, C.,
2016. Scissor-like chiral metamolecules for probing
intracellular telomerase activity. Advanced Functional
Materials, 26(40): 7352–7358.
Negrín-Montecelo, Y., Movsesyan, A., Gao, J., Burger, S.,
Wang, Z. M., Nlate, S., Correa-Duarte, M. A., 2022.
Chiral generation of hot carriers for polarization-
sensitive plasmonic photocatalysis. Journal of the
American Chemical Society, 144(4): 1663–1671.
Rothemund, P. W., 2006. Folding DNA to create nanoscale
shapes and patterns. Nature, 440(7082): 297–302.
Sun, X., Wang, X., Wang, W., Sun, M., Choi, W. J., Kim,
J. Y., Xu, C., 2022. Enantiomer-dependent
immunological response to chiral nanoparticles. Nature,
601(7893): 366–373.
Tan, L., Yu, S. J., Jin, Y., Li, J., Wang, P. P., 2022.
Inorganic chiral hybrid nanostructures for tailored
chiroptics and chirality-dependent photocatalysis.
Angewandte Chemie International Edition, 61(24):
e202112400.
Urban, M. J., Dutta, P. K., Wang, P., Duan, X., Shen, X.,
Ding, B., Liu, N., 2016. Plasmonic toroidal
metamolecules assembled by DNA origami. Journal of
the American Chemical Society, 138(17): 5495–5498.
Weng, X. K., Yuan, S. F., Lin, Z. W., Wang, Q. M., 2014.
A chiral gold nanocluster Au₂₀ protected by tetradentate
phosphine ligands. Angewandte Chemie, 126(11):
2967–2970.
Wang, Y. L., 2023. Synthesis and near-infrared
photothermal properties of chiral gold nanostructures.
Master’s thesis, Henan University.
Xu, C., 2025. Colorimetric detection of drug molecule
enantiomers using chiral gold nanoprobe. Journal of
Chemical Education of Higher Institutions
, 46(2): 78–
85.
Zhang, C., Gao, X., Li, H., Ji, Y., Cai, R., Hu, Z., Wu, X.,
2023. Regulation of chirality transfer and amplification
from chiral cysteine to gold nanorod assemblies using
nonchiral surface ligands. Advanced Optical Materials,
11(18): 2202804.
Zhang, H., Govorov, A. O., 2013. Giant circular dichroism
of a molecule in a region of strong plasmon resonances
between two neighboring gold nanocrystals. Physical
Review B: Condensed Matter and Materials Physics,
87(7): 075410.