code, which can then be implemented on a PLC and
simulated.
The current approach lacks a structured
representation, relying on variables and Boolean
constraints that are hard to interpret for new users..
Understanding the complete system based solely on
these constraints and variables can be challenging.
Since the BESS model uses problem-specific
constraints, adding new requirements often requires
major changes, limiting extensibility and
generalizability.
We argue that overcoming these limitations
requires a structured approach for constructing a
generic set of elements and structured constraints
with a generic language adapted to any logic
controller synthesis problem. This approach involves
a clear definition and application of various types of
constraints to the distinct components of the
controller synthesis problem.
ACKNOWLEDGEMENTS
This research was funded by the French National
Research Agency (ANR) under the Digital Twins for
Cyber-Physical Systems project (ANR-23- CE10-
0010-01). The authors would like to thank the ANR.
REFERENCES
Hietter, Y. (2009). Synthèse algébrique de lois de
commande pour les systèmes à évènements discrets
logiques. Phd. École normale supérieure de Cachan -
ENS Cachan.
IEC 60848, (2012). GRAFCET specification language for
sequential function charts. (3rd ed.).
John, K.-H., & Tiegelkamp, M. (2001). IEC 61131-3:
Programming Industrial Automation Systems.
Springer.
Jones, C. T. (1998). Programmable Logic Controllers: The
Complete Guide to the Technology. Brilliant-Training.
Koren, Y. (2010). The Global Manufacturing Revolution:
Product-Process-Business Integration and
Reconfigurable Systems. John Wiley & Sons.
Leroux, H. (2011) Algebraic Synthesis of Logical
Controllers with Optimization Criteria. ENS Cachan,
Cachan, France.
Leroux, H., & Roussel, J. -M. (2012) Algebraic synthesis
of logicalcontrollers with optimization criteria.
Proceedings of the 6th International Workshop on
Verification and Evaluation of Computer and
Communication Systems (VECOS ’12), pp. 103–114.
Marques-Silva, J., et al (2011). Boolean lexicographic
optimization: algorithms & applications. Annals of
Mathematics and Artificial Intelligence, pp. 317-343.
Peregrin, J. (2007). Extensional vs. Intensional Logic. In
Philosophy of Logic (pp. 913-942). Elsevier.
Rabin, O. M., & Scott, D. (1959). Finite Automata and
Their Decision Problems. IBM Journal of Research and
Development, pp. 114-125.
Ramadge, P. J., & Wonham, W. M. (1987). Supervisory
Control of a Class Of Discret Event Processes. SIAM
Journal on Control and Optimization, pp. 206-230.
Ranger, T., et al (2021). Manufacturing Tasks
Synchronization by Algebraic Synthesis. 4th IFAC
Conference on Embedded Systems, Computational
Intelligence and Telematics in Control CESCIT 2021,
pp. 226-231.
Ranger, T. (2022). Approche par synthèse algébrique et
filtre logique pour la commande des systèmes
manufacturiers cyber-physiques. Phd. Université de
Reims Champagne-Ardenne, Reims.
Renard, D., et al (2024). From Reinforcement Learning to
Reality: Generating Structured Text Logic Controller.
2024 10th International Conference on Control,
Decision and Information Technologies (CoDIT), pp.
1269-1274.
Riera, B., & Renard, D. (2024). École SED et plateforme de
formation en ligne : une dynamique pour la diffusion
des systèmes à événements discrets https://fad.univ-
lorraine.fr/pluginfile.php/158867/mod_label/intro/UT
L_CTRL_SA_Application.pdf
Riera, B., & Vigario, B. (2017). HOME I/O and FACTORY
I/O: a virtual house and a virtual plant for control
education. 20th IFAC World Congress, pp. 9144-9149.
Roussel, J.-M., & Lesage, J. (1996). Validation and
verification of grafcets using state machine.
Proceedings of IMACS-IEEE ”CESA'96”, pp. 758-764.
Roussel, J.-M., & Lesage, J.-J. (2012). Algebraic synthesis
of logical controllers despite inconsistencies in
specifications. IFAC Proceedings Volumes, pp. 307-
314.
Roussel, J.-M., & Lesage, J.-J. (2014). Design of Logic
Controllers Thanks to Symbolic Computation of
Simultaneously Asserted Boolean Equations.
Mathematical Problems in Engineering, pp. 1-15.
Schumacher, F., et al (2013). Tool support for an automatic
transformation of GRAFCET specifications into IEC
61131-3 control code. 2013 IEEE 18th Conference on
Emerging Technologies & Factory Automation
(ETFA).
Teng, S.-H., & Black, J. T. (1990). Cellular manufacturing
systems modeling: The Petri net approach. Journal of
Manufacturing Systems, pp. 45-54.