
A relevant perspective is to overcome simplified
assumptions. For instance, observation noise may
not always follow a Gaussian distribution, and ac-
tion failures can stem from various factors, such as
mechanical constraints that can depend on the obsta-
cles and the environment. We believe that with more
data collection, a more accurate model can be devel-
oped, such as a planner based on large language mod-
els (Honerkamp et al., 2024), enabling the proposed
method to provide more robust and effective solutions
for NAMO tasks.
ACKNOWLEDGEMENTS
The publication of this research was supported by the
National Natural Science Foundation of China [Grant
42101445] and the Director Foundation of Guang-
dong Laboratory of Artificial Intelligence and Digital
Economy(SZ) [Grant 25420001 and 24420004].
REFERENCES
Coumans, E. and Bai, Y. (2016–2021). Pybullet, a python
module for physics simulation for games, robotics and
machine learning. http://pybullet.org.
Curtis, A., Matheos, G., Gothoskar, N., Mansinghka, V.,
Tenenbaum, J., Lozano-P
´
erez, T., and Kaelbling, L. P.
(2024). Partially observable task and motion planning
with uncertainty and risk awareness. arXiv preprint
arXiv:2403.10454.
Denoeux, T. (2019). Decision-making with belief functions:
A review. International Journal of Approximate Rea-
soning, 109:87–110.
Ellis, K., Zhang, H., Stoyanov, D., and Kanoulas, D.
(2022). Navigation among movable obstacles with
object localization using photorealistic simulation. In
2022 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 1711–1716.
IEEE.
Feng, D., Harakeh, A., Waslander, S. L., and Dietmayer,
K. (2021). A review and comparative study on proba-
bilistic object detection in autonomous driving. IEEE
Transactions on Intelligent Transportation Systems,
23(8):9961–9980.
Garrett, C. R., Paxton, C., Lozano-P
´
erez, T., Kaelbling,
L. P., and Fox, D. (2020). Online replanning in be-
lief space for partially observable task and motion
problems. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 5678–5684.
IEEE.
Grisetti, G., Stachniss, C., and Burgard, W. (2007).
Improved techniques for grid mapping with rao-
blackwellized particle filters. IEEE transactions on
Robotics, 23(1):34–46.
Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A for-
mal basis for the heuristic determination of minimum
cost paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100–107.
Honerkamp, D., B
¨
uchner, M., Despinoy, F., Welschehold,
T., and Valada, A. (2024). Language-grounded dy-
namic scene graphs for interactive object search with
mobile manipulation. IEEE Robotics and Automation
Letters.
Kaelbling, L. P. and Lozano-P
´
erez, T. (2013). Integrated
task and motion planning in belief space. The Interna-
tional Journal of Robotics Research, 32(9-10):1194–
1227.
Kalman, R. E. (1960). A new approach to linear filtering
and prediction problems.
Kim, B., Wang, Z., Kaelbling, L. P., and Lozano-P
´
erez, T.
(2019). Learning to guide task and motion planning
using score-space representation. The International
Journal of Robotics Research, 38(7):793–812.
Koenig, N. and Howard, A. (2004). Design and use
paradigms for gazebo, an open-source multi-robot
simulator. In 2004 IEEE/RSJ IROS, volume 3, pages
2149–2154. IEEE.
Li, C., Xia, F., Martin-Martin, R., and Savarese, S. (2020).
Hrl4in: Hierarchical reinforcement learning for inter-
active navigation with mobile manipulators. In Con-
ference on Robot Learning, pages 603–616. PMLR.
Maier, S. F. and Seligman, M. E. (1976). Learned helpless-
ness: theory and evidence. Journal of experimental
psychology: general, 105(1):3.
Muguira-Iturralde, J., Curtis, A., Du, Y., Kaelbling, L. P.,
and Lozano-P
´
erez, T. (2023). Visibility-aware navi-
gation among movable obstacles. In 2023 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 10083–10089. IEEE.
Pan, T., Wells, A. M., Shome, R., and Kavraki, L. E. (2022).
Failure is an option: task and motion planning with
failing executions. In 2022 International Conference
on Robotics and Automation (ICRA), pages 1947–
1953. IEEE.
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and
Lerer, A. (2017). Automatic differentiation in pytorch.
Romero-Ramirez, F. J., Mu
˜
noz-Salinas, R., and Medina-
Carnicer, R. (2018). Speeded up detection of squared
fiducial markers. Image and vision Computing,
76:38–47.
R
¨
osmann, C., Hoffmann, F., and Bertram, T. (2015). Timed-
elastic-bands for time-optimal point-to-point nonlin-
ear model predictive control. In 2015 european con-
trol conference (ECC), pages 3352–3357. IEEE.
Safronov, E., Colledanchise, M., and Natale, L. (2020).
Task planning with belief behavior trees. In 2020
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 6870–6877. IEEE.
Silver, T., Chitnis, R., Tenenbaum, J., Kaelbling, L. P., and
Lozano-P
´
erez, T. (2021). Learning symbolic opera-
tors for task and motion planning. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), pages 3182–3189. IEEE.
ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics
148