
vanced Industrial Production* (reg. no.
CZ.02.01.01/00/22 008/0004590), by the Czech
Science Foundation (GA
ˇ
CR) under research projects
no. 23-07517S and no. 24-12360S, and by the CTU
grant no. SGS23/177/OHK3/3T/13.
REFERENCES
Axehill, D. (2015). Controlling the level of sparsity in MPC.
Systems & Control Letters, 76:1–7.
Baca, T., Petrlik, M., Vrba, M., Spurny, V., Penicka, R.,
Hert, D., and Saska, M. (2021). The MRS UAV
System: Pushing the Frontiers of Reproducible Re-
search, Real-world Deployment, and Education with
Autonomous Unmanned Aerial Vehicles. Journal of
Intelligent & Robotic Systems, 102(1):26.
C., M. A., K., B., Ramsundar, and S., J. (2024). Path Plan-
ning Algorithm for UAV Based Water Quality Mon-
itoring. In 2024 3rd Edition of IEEE Delhi Section
Flagship Conference (DELCON), pages 1–5.
Colomina, I. and Molina, P. (2014). Unmanned aerial sys-
tems for photogrammetry and remote sensing: A re-
view. ISPRS Journal of Photogrammetry and Remote
Sensing, 92:79–97.
Faust, A., Palunko, I., Cruz, P., Fierro, R., and Tapia, L.
(2013). Learning swing-free trajectories for UAVs
with a suspended load. In 2013 IEEE International
Conference on Robotics and Automation, pages 4902–
4909. ISSN: 1050-4729.
Frison, G. and Diehl, M. (2020). HPIPM: a high-
performance quadratic programming framework for
model predictive control
*
. IFAC-PapersOnLine,
53(2):6563–6569.
Gode, K., Gharat, K., Jogi, H., Sapkal, A., Thakar, R.,
Vishwakarma, S., Talele, K., and Kulkarni, S. (2024).
Multi-Stage UAV-Based System for Scalable and Ac-
curate Crop Health Monitoring. In 2024 IEEE Space,
Aerospace and Defence Conference (SPACE), pages
652–655.
Kalman, R. E. (1960). A New Approach to Linear Filtering
and Prediction Problems. Journal of Basic Engineer-
ing, 82(1):35–45.
Li, G., Tunchez, A., and Loianno, G. (2021). PCMPC:
Perception-Constrained Model Predictive Control for
Quadrotors with Suspended Loads using a Single
Camera and IMU. In 2021 IEEE International Con-
ference on Robotics and Automation (ICRA), pages
2012–2018. ISSN: 2577-087X.
Li, H., Wang, H., Feng, C., Gao, F., Zhou, B., and Shen, S.
(2023). AutoTrans: A Complete Planning and Con-
trol Framework for Autonomous UAV Payload Trans-
portation. IEEE Robotics and Automation Letters,
8(10):6859–6866. Conference Name: IEEE Robotics
and Automation Letters.
Murray, C. C. and Chu, A. G. (2015). The flying sidekick
traveling salesman problem: Optimization of drone-
assisted parcel delivery. Transportation Research Part
C: Emerging Technologies, 54:86–109.
Palunko, I., Fierro, R., and Cruz, P. (2012). Trajectory
generation for swing-free maneuvers of a quadrotor
with suspended payload: A dynamic programming
approach. In 2012 IEEE International Conference on
Robotics and Automation, pages 2691–2697. ISSN:
1050-4729.
Qin, S. J. and Badgwell, T. A. (2003). A survey of indus-
trial model predictive control technology. Control En-
gineering Practice, 11(7):733–764.
Recalde, L. F., Sarvaiya, M., Loianno, G., and Li, G. (2025).
ES-HPC-MPC: Exponentially Stable Hybrid Percep-
tion Constrained MPC for Quadrotor with Suspended
Payloads. arXiv:2504.08841 [eess] version: 1.
Rego, B. S. and Raffo, G. V. (2016). Suspended load path
tracking control based on zonotopic state estimation
using a tilt-rotor UAV. In 2016 IEEE 19th Interna-
tional Conference on Intelligent Transportation Sys-
tems (ITSC), pages 1445–1451. ISSN: 2153-0017.
Romero, A., Sun, S., Foehn, P., and Scaramuzza, D.
(2022). Model Predictive Contouring Control for
Time-Optimal Quadrotor Flight. IEEE Transactions
on Robotics, 38(6):3340–3356.
Sarvaiya, M., Li, G., and Loianno, G. (2025). HPA-MPC:
Hybrid Perception-Aware Nonlinear Model Predictive
Control for Quadrotors With Suspended Loads. IEEE
Robotics and Automation Letters, 10(1):358–365.
Sikora, T., Markovic, L., and Bogdan, S. (2023). Towards
Operating Wind Turbine Inspections using a LiDAR-
equipped UAV. arXiv:2306.14637 [cs].
Sreenath, K., Michael, N., and Kumar, V. (2013). Trajectory
generation and control of a quadrotor with a cable-
suspended load - A differentially-flat hybrid system.
In 2013 IEEE International Conference on Robotics
and Automation, pages 4888–4895. ISSN: 1050-4729.
Tang, S. and Kumar, V. (2015). Mixed Integer Quadratic
Program trajectory generation for a quadrotor with
a cable-suspended payload. In 2015 IEEE Inter-
national Conference on Robotics and Automation
(ICRA), pages 2216–2222. ISSN: 1050-4729.
Wang, H., Li, H., Zhou, B., Gao, F., and Shen, S. (2024).
Impact-Aware Planning and Control for Aerial Robots
With Suspended Payloads. IEEE Transactions on
Robotics, 40:2478–2497.
Zhang, Y., Xu, J., Zhao, C., and Dong, J. (2023). IF-
Based Trajectory Planning and Cooperative Control
for Transportation System of Cable Suspended Pay-
load With Multi UAVs. In 2023 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), pages 635–642. ISSN: 2153-0866.
APPENDIX
Table 7 summarizes all key parameters used in the
experiments, including those for the Linear Kalman
Filter (LKF), the Model Predictive Controllers (MPC
and MPCC), solver settings, and physical parameters
of the UAV and payload.
Towards Fully Onboard State Estimation and Trajectory Tracking for UAVs with Suspended Payloads
137