
language models. In Gen-IR@SIGIR 2023: The First
Workshop on Generative Information Retrieval.
Jansen, B. J., Spink, A., and Saracevic, T. (2000). Real
life, real users, and real needs: A study and analysis
of user queries on the web. Information Processing &
Management, 36(2):207–227.
Krovetz, R. and Croft, W. B. (1992). Lexical ambigu-
ity and information retrieval. ACM Trans. Inf. Syst.,
10(2):115–141.
Loureiro, D., Rezaee, K., Pilehvar, M. T., and Camacho-
Collados, J. (2021). Analysis and evaluation of lan-
guage models for word sense disambiguation. Inter-
national Conference on Computational Logic.
Manning, C. D., Raghavan, P., and Sch
¨
utze, H. (2008). In-
troduction to Information Retrieval. Cambridge Uni-
versity Press.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a).
Efficient Estimation of Word Representations in Vec-
tor Space. In Bengio, Y. and LeCun, Y., editors, 1st In-
ternational Conference on Learning Representations,
ICLR 2013, Scottsdale, Arizona, USA.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean,
J. (2013b). Distributed Representations of Words and
Phrases and their Compositionality. In Proceedings of
the 27th International Conference on Neural Informa-
tion Processing Systems - Volume 2, NIPS’13, page
3111–3119, Red Hook, NY, USA. Curran Associates
Inc.
Naseri, S., Dalton, J., Yates, A., and Allan, J. (2021).
CEQE: Contextualized Embeddings for Query Ex-
pansion. In Hiemstra, D., Moens, M.-F., Mothe, J.,
Perego, R., Potthast, M., and Sebastiani, F., editors,
Advances in Information Retrieval, Lecture Notes in
Computer Science, pages 467–482, Cham. Springer
International Publishing.
Ould-Amer, N., Mulhem, P., and G
´
ery, M. (2016). To-
ward Word Embedding for Personalized Information
Retrieval. In Neu-IR: The SIGIR 2016 Workshop on
Neural Information Retrieval.
Pennington, J., Socher, R., and Manning, C. (2014). GloVe:
Global Vectors for Word Representation. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages
1532–1543, Doha, Qatar. Association for Computa-
tional Linguistics.
ˇ
Reh
˚
u
ˇ
rek, R. and Sojka, P. (2010). Software Framework
for Topic Modelling with Large Corpora. In Proceed-
ings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks, pages 45–50, Valletta, Malta.
ELRA.
Roy, D., Paul, D., Mitra, M., and Garain, U. (2016). Using
Word Embeddings for Automatic Query Expansion.
In Neu-IR: The SIGIR 2016 Workshop on Neural In-
formation Retrieval.
Scarlini, B., Pasini, T., and Navigli, R. (2020). Sensembert:
Context-enhanced sense embeddings for multilingual
word sense disambiguation. AAAI Conference on Ar-
tificial Intelligence.
Silverstein, C., Marais, H., Henzinger, M., and Moricz, M.
(1999). Analysis of a very large web search engine
query log. ACM SIGIR Forum, 33(1):6–12.
Sp
¨
arck Jones, K., Walker, S., and Robertson, S. (1998). A
probabilistic model of information and retrieval: De-
velopment and status. Technical Report UCAM-CL-
TR-446, University of Cambridge, Computer Labora-
tory.
Wang, L., Yang, N., and Wei, F. (2023). Query2doc: Query
Expansion with Large Language Models. In Bouamor,
H., Pino, J., and Bali, K., editors, Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 9414–9423, Singapore.
Association for Computational Linguistics.
Wiedemann, G., Remus, S., Chawla, A., and Biemann,
C. (2019). Does bert make any sense? inter-
pretable word sense disambiguation with contextual-
ized embeddings. In Proceedings of the 15th Con-
ference on Natural Language Processing (KONVENS
2019): Long Papers, pages 161–170, Erlangen, Ger-
many. German Society for Computational Linguistics
& Language Technology.
Wikipedia contributors (2025a). Data Platform/Data
Lake/Traffic/Webrequest — Wikitech. [Online; ac-
cessed 25
th
January 2025].
Wikipedia contributors (2025b). Research:Page view —
Wikimedia Meta-Wiki. [Online; accessed 25
th
Jan-
uary 2025].
Wikipedia contributors (2025c). Research:Wikipedia Click-
stream — Wikimedia Meta-Wiki. [Online; accessed
25
th
January 2025].
Wikipedia contributors (2025d). Wikimedia Foundation
Privacy Policy — Wikimedia Foundation Governance
Wiki. [Online; accessed 25
th
January 2025].
Zhou, D., Wu, X., Zhao, W., Lawless, S., and Liu, J. (2017).
Query expansion with enriched user profiles for per-
sonalized search utilizing folksonomy data. IEEE
Transactions on Knowledge and Data Engineering,
29(7):1536–1548.
WEBIST 2025 - 21st International Conference on Web Information Systems and Technologies
300