REFERENCES
Bassotti, G., Villanacci, V., Salerni, B., Maurer, C. A.,
Cathoma, G. (2011). Beyond hematoxylin and eosin:
the importance of immunohistochemical techniques for
evaluating surgically resected constipated patients
Tech. Coloproctol 15:371–375, Springer, DOI
10.1007/s10151-011-0721-5.
Cooksey, C. J. (2021) Hematoxylin in the 21st century,
Biotechnic & Histochemistry, 96:3, pp. 242-249, DOI:
10.1080/10520295.2020.1786725
Cvetkovic S.D., Schirris J., de With P.H.N. (2007).
Locally-Adaptive Image Contrast Enhancement
without Noise and Ringing Artifacts. IEEE
International Conference on Image Processing, vol. 3,
pp. 551-560.
Cyganek, B. (2009). An Introduction to 3D Computer
Vision Techniques and Algorithms, Wiley,.
Dapson RW., Horobin RW. (2009). Dyes from a twenty-
first century perspective, Biotechnic & Histochemistry,
84:4, pp. 135-137, DOI: 10.1080/10520290902908802
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S. (2020). An image is worth
16x16 words: Transformers for image recognition at
scale. arXiv preprint. arXiv: 2010.11929.
https://doi.org/10.48550/arXiv.2010.11929.
Grabek, J., Cyganek, B (2019). Speckle Noise Filtering in
Side-Scan Sonar Images Based on the Tucker Tensor
Decomposition, Sensors, 19(13), 2903; https://doi.org/
10.3390/s19132903
Greeley, C., Holder, L., Nilsson, E. E., Skinner, M. K.
(2024). Scalable deep learning artificial intelligence
histopathology slide analysis and validation. Scientific
Reports, 14(1), 26748. https://doi.org/10.1038/s41598-
024-76807-x.
Janowczyk A, Madabhushi A. (2016). Deep learning for
digital pathology image analysis: a comprehensive
tutorial with selected use cases. J Pathol
Inform;7(1):29.
Janowczyk, Basavanhally, A., Madabhushi A. (2017).
Stain normalization using sparse autoencoders
(stanosa): application to digital pathology, Comput.
Med. Imaging Graph. 57.
Ke W.-M., Wang T.-H., Chiu C.-T. (2009). Hardware-
efficient virtual high dynamic range image
reproduction. Proceedings of the 16th IEEE
International Conference on Image Processing
(ICIP’09). Piscataway, NJ, USA: IEEE Press, pp.
2665–2668.
Knapik M., Cyganek B. (2021). Fast eyes detection in
thermal images. Multimedia Tools and Applications
80:3601–3621, Springer, https://doi.org/10.1007/
s11042-020-09403-6.
Koziarski, M., Cyganek, B. (2018). Marine Snow Removal
Using a Fully Convolutional 3D Neural Network
Combined with an Adaptive Median Filter, 24th
International Conference on Pattern Recognition,
Pattern Recognition And Information Forensics (ICPR
2018) LNIP Vol. 11188 , pp. 16-25
Koziarski, M., Cyganek, B., Niedziela, P., Olborski, B.,
Antosz, Z., Żydak, M., Kwolek, B., Wąsowicz, P.,
Bukała, A., Swadźba, J. (2024). DiagSet: A dataset for
prostate cancer histopathological image classification.
Scientific Reports, 14(1), 6780. Nature Publishing
Group. https://doi.org/10.1038/s41598-024-52183-4.
Lisowski, A. (2019) Science of H&E. Leica BioSystems
https://www.leicabiosystems.com/knowledge-
pathway/science-of-he/
Ma, ZY, Zhang, XF, Hu, YZ, Zhu, MD, Jin, J, Qian, P.
(2024). Comparison of staining quality between rapid
and routine hematoxylin and eosin staining of frozen
breast tissue sections: an observational study. J Int Med
Res. Jun; 52(6): 3000605241259682. doi:
10.1177/03000605241259682. PMID: 38886869;
PMCID: PMC11184997.
Ruifrok A.C., Johnston D.A. (2001). Quantification of
histochemical staining by color deconvolution, Anal.
Quant. Cytol. Histol. 23, pp. 291–299.
Sampias, C., Rolls, G. (2025). H&E Staining Overview: A
Guide to Best Practices. Leica BioSystems.
https://www.leicabiosystems.com/knowledge-
pathway/he-staining-overview-a-guide-to-best-
practices/
Sen P., Aguerrebere C. (2016). Practical High Dynamic
Range Imaging of Everyday Scenes. IEEE Signal
Processsing Magazine, pp. 36-44.
Srinidhi, C.L., Ciga, O., Martel, A.L. (2021). Deep neural
network models for computational histopathology: A
survey, Medical Image Analysis, Volume 67, 2021,
101813, ISSN 1361-8415, https://doi.org/10.1016/j.
media.2020.101813.
Sorenson, R.L., Brelje, T.C. (2014). Atlas of Human
Histology A Guide to Microscopic Structure of Cells,
Tissues and Organs 3rd Edition
Tellez D, Litjens G, Bándi P. (2019). Quantifying the
Effects of Data Augmentation and Stain Color
Normalization in Convolutional Neural Networks for
Computational Pathology Medical Image Analysis,
Volume 58.
Titford, M. (2005). The long history of hematoxylin,
Biotechnic & Histochemistry, 80:2, pp. 73-78, Taylor
& Francis.
Zanjani F.G., Zinger S., Bejnordi, B.E., van der Laak,
J.A., de With, P.H. (2018). Stain normalization of
histopathology images using generative adversarial
networks, in: 2018 IEEE 15th International
Symposium on Biomedical Imaging, pp. 573–577,
IEEE.