
REFERENCES
Beckers, T., Seidman, J., Perdikaris, P., and Pappas, G. J.
(2022). Gaussian process port-hamiltonian systems:
Bayesian learning with physics prior. In 2022 IEEE
61st Conference on Decision and Control (CDC),
pages 1447–1453.
Blum, M. (1957). Fixed memory least squares filters using
recursion methods. IRE Transactions on Information
Theory, 3(3):178–182.
Desai, S. A., Mattheakis, M., Sondak, D., Protopapas, P.,
and Roberts, S. J. (2021). Port-hamiltonian neural net-
works for learning explicit time-dependent dynamical
systems. Physics Review E, 104:034312.
Gupta, N. and Hauser, R. (2007). Kalman filtering with
equality and inequality state constraints.
Haseltine, E. L. and Rawlings, J. B. (2005). Critical evalua-
tion of extended Kalman filtering and moving-horizon
estimation. Industrial & Engineering Chemistry Re-
search, 44(8):2451–2460.
Huber, M. F. (2013). Recursive Gaussian process re-
gression. In 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, pages
3362–3366.
Huber, M. F. (2014). Recursive Gaussian process: On-line
regression and learning. Pattern Recognition Letters,
45:85–91.
Husmann, R., Weishaupt, S., and Aschemann, H. (2023).
Nonlinear control of a vapor compression cycle by
input-output linearisation. In 27th International Con-
ference on Methods and Models in Automation and
Robotics (MMAR), pages 193–198.
Husmann, R., Weishaupt, S., and Aschemann, H. (2024a).
Control of a vapor compression cycle based on a
moving-boundary model. In 2024 28th International
Conference on System Theory, Control and Comput-
ing (ICSTCC), pages 438–444.
Husmann, R., Weishaupt, S., and Aschemann, H. (2024b).
Nonlinear control of a vapor compression cycle based
on a partial IOL. In IECON 2024 - 50th Annual
Conference of the IEEE Industrial Electronics Soci-
ety, pages 1–6.
Husmann, R., Weishaupt, S., and Aschemann, H. (2025).
Direct integration of recursive Gaussian process re-
gression into extended Kalman filters with applica-
tion to vapor compression cycle control. In 13th IFAC
Symposium on Nonlinear Control Systems NOLCOS
2025.
Jain, L. C., Seera, M., Lim, C. P., and Balasubramaniam,
P. (2014). A review of online learning in supervised
neural networks. Neural computing and applications,
25:491–509.
Julier, S. J. and Uhlmann, J. K. (1997). A new ex-
tension of the Kalman filter to nonlinear systems.
In Proc. of AeroSense: The 11th Int. Symp. on
Aerospace/Defence Sensing Simulation and Controls.
Kalman, R. E. (1960). A new approach to linear filtering
and prediction problems. Transactions of the ASME–
Journal of Basic Engineering, 82(Series D):35–45.
McHutchon, A. J. (2015). Nonlinear modelling and con-
trol using Gaussian processes, chapter A2, pages 185–
192.
Nocedal, J. and Wright, S. J. (2006). Numerical Opti-
mization, chapter 16.5, pages 467–480. Springer New
York, NY.
Qui
˜
nonero-Candela, J. and Rasmussen, C. E. (2005). A uni-
fying view of sparse approximate Gaussian process
regression. Journal of Machine Learning Research,
6:1939–1959.
Sch
¨
urch, M., Azzimonti, D., Benavoli, A., and Zaffalon,
M. (2020). Recursive estimation for sparse Gaussian
process regression. Automatica, 120.
Simon, D. (2006a). Optimal State Estimation, chapter 7.5,
pages 212–222. John Wiley & Sons, Ltd.
Simon, D. (2006b). Optimal State Estimation, chapter 6.1,
pages 150–155. John Wiley & Sons, Ltd.
Tully, S., Kantor, G., and Choset, H. (2011). Inequality
constrained Kalman filtering for the localization and
registration of a surgical robot. In 2011 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems, pages 5147–5152.
Veiga, S. D. and Marrel, A. (2020). Gaussian process re-
gression with linear inequality constraints. Reliability
Engineering & System Safety, 195:106732.
Recursive Gaussian Process Regression with Integrated Monotonicity Assumptions for Control Applications
349