
ACKNOWLEDGEMENTS
This work was partially funded by the Deutsche
Forschungsgemeinschaft DFG (HA 5480/10-1).
REFERENCES
Arnas, D., Casanova, D., and Tresaco, E. (2021). 4d lattice
flower constellations. Advances in Space Research,
67:3683–3695.
Avenda
˜
no, M., Davis, J., and Mortari, D. (2013). The 2-
D lattice theory of Flower Constellations. Celestial
Mechanics and Dynamical Astronomy, 116:325–337.
Aydin, M. E., Durgut, R., and Rakib, A. (2023). Adaptive
operator selection utilising generalised experience.
Ballard, A. H. (1980). Rosette constellations of earth satel-
lites. IEEE Transactions on Aerospace and Electronic
Systems.
Beech, T. and Dutruel-Lecohier, G. (2013). A study of three
satellite constellation design algorithms.
Bernhardt, S., Eiselbrecher, F., and Schmidt, A. (2024).
System and service volume simulation environment
s²vse. In Proceedings of the 37th International Tech-
nical Meeting of the Satellite Division of The Institute
of Navigation (ION GNSS+ 2024), pages 855–866.
Casanova, D., Avendano, M., and Mortari, D. (2012). Op-
timizing Flower Constellations for Global Coverage.
In AIAA/AAS Astrodynamics Specialist Conference
2012.
Casanova, D., Avenda
˜
no, M., and Mortari, D. (2014). Seek-
ing GDOP-optimal Flower Constellations for global
coverage problems through evolutionary algorithms.
Aerospace Science and Technology, 39:331–337.
Choo, N., Ahner, D., and Little, B. (2024). A Survey of Or-
bit Design and Selection Methodologies. The Journal
of the Astronautical Sciences, 71.
Davis, J., Avenda
˜
no, M., and Mortari, D. (2013). The 3-
D lattice theory of Flower Constellations. Celestial
Mechanics and Dynamical Astronomy, 116:339–356.
Davis, J. and Mortari, D. (2012). Reducing walker, flower,
and streets-of-coverage constellations to a single con-
stellation design framework. Advances in the Astro-
nautical Sciences, 143:697–712.
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary Com-
putation, 6(2):182–197.
Fialho, A. (2010). Adaptive Operator Selection for Opti-
mization. PhD thesis, Universite Paris-Sud.
Han, Y., Wang, L., Fu, W., Zhou, H., Li, T., Xu, B., and
Chen, R. (2021). Leo navigation augmentation con-
stellation design with the multi-objective optimiza-
tion approaches. Chinese Journal of Aeronautics,
34(4):265–278.
Hitomi, N. and Selva, D. (2018). Constellation optimization
using an evolutionary algorithm with a variable-length
chromosome representation. In 2018 IEEE Aerospace
Conference, pages 1–12.
Huang, S., Colombo, C., and Bernelli-Zazzera, F. (2021).
Multi-criteria design of continuous global coverage
walker and street-of-coverage constellations through
property assessment. Acta Astronautica, 188:151–
170.
Konak, A., Coit, D., and Smith, A. (2006). Multi-objective
optimization using genetic algorithms: A tutorial. Re-
liability Engineering & System Safety, 91:992–1007.
Li, X., Jiang, K., and Li, P. (2023). Analysis of naviga-
tion augmentation performance based on leo satellite
communication constellation. In China Satellite Nav-
igation Conference (CSNC 2024) Proceedings.
Liang, J., Chaudhry, A. U., and Yanikomeroglu, H.
(2021). Phasing parameter analysis for satellite col-
lision avoidance in starlink and kuiper constellations.
In 5G World Forum Workshop on Satellite and Non-
Terrestrial Networks.
More, H., Cianca, E., and Sanctis, M. D. (2022). Position-
ing performance of leo mega constellations in deep ur-
ban canyon environments. In 25th International Sym-
posium on Wireless Personal Multimedia Communi-
cations (WPMC).
Mortari, D., Wilkins, M., and Bruccoleri, C. (2004). The
flower constellations. The Journal of the Astronautical
Sciences, 52.
Nadoushan, M. J. and Assadian, N. (2015). Repeat ground
track orbit design with desired revisit time and optimal
tilt. Aerospace Science and Technology, 40:200–208.
Paek, S. W., Kim, S., and de Weck, O. (2019). Opti-
mization of reconfigurable satellite constellations us-
ing simulated annealing and genetic algorithm. Sen-
sors, 19(4):765.
Walker, J. G. (1970). Circular Orbit Patterns Providing
Continuous Whole Earth Coverage. Technical report,
Royal Aircraft Establishment Farnborough.
Wei, W., Xuan, M., Li, L., Lin, Q., Ming, Z., and Coello
Coello, C. A. (2023). Multiobjective optimization al-
gorithm with dynamic operator selection for feature
selection in high-dimensional classification. Applied
Soft Computing, 143:110360.
Whittecar, W. and Ferringer, M. (2014). Global Coverage
Constellation Design Exploration Using Evolutionary
Algorithms. In AIAA/AAS Astrodynamics Specialist
Conference 2014.
Xu, H., Hsu, L., Lu, D., and Cai, B. (2020). Sky visibil-
ity estimation based on gnss satellite visibility: an ap-
proach of gnss-based context awareness. GPS Solu-
tions, 24.
Xu, X., Ju, Z., and Luo, J. (2022). Design of constellations
for gnss reflectometry mission using the multiobjec-
tive evolutionary algorithms. IEEE Transactions on
Geoscience and Remote Sensing, 60.
Satellite Navigation Constellation Optimisation Problem Definition for the Application of Genetic Algorithms
339