
Fernandez-Chaves, D., Ruiz-Sarmiento, J. R., Jaenal,
A., Petkov, N., and Gonzalez-Jimenez, J. (2022).
RobotVirtualHome, an ecosystem of virtual environ-
ments and tools for realistic indoor robotic simulation.
Expert Systems with Applications, 208:117970.
Guo, Y., Liu, Y., Georgiou, T., and Lew, M. S. (2018). A re-
view of semantic segmentation using deep neural net-
works. International Journal of Multimedia Informa-
tion Retrieval, 7:87–93.
He, P., Shen, T., Wang, Y., Zhu, D., Hu, Q., Li, H., Yin,
W., Zhang, Y., and Yang, A. (2025). A study on auto-
matic annotation methods for watershed environmen-
tal elements based on semantic segmentation models.
European Journal of Remote Sensing, 58.
Huang, L., Jiang, B., Lv, S., Liu, Y., and Fu, Y. (2024).
Deep-Learning-Based Semantic Segmentation of Re-
mote Sensing Images: A Survey. IEEE Journal of Se-
lected Topics in Applied Earth Observations and Re-
mote Sensing, 17:8370–8396.
Khajarian, S., Schwimmbeck, M., Holzapfel, K., Schmidt,
J., Auer, C., Remmele, S., and Amft, O. (2025). Au-
tomated multimodel segmentation and tracking for
AR-guided open liver surgery using scene-aware self-
prompting. International Journal of Computer As-
sisted Radiology and Surgery .
Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C.,
Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C.,
Lo, W. Y., Doll
´
ar, P., and Girshick, R. (2023). Seg-
ment Anything. Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 3992–
4003.
Lee, M. S., Kim, M., and Jeong, C. Y. (2022). Real-time se-
mantic segmentation on edge devices: A performance
comparison of segmentation models. International
Conference on ICT Convergence, 2022-October:383–
388.
Lian, J., Chen, S., Guo, G., Sui, D., Zhao, J., and Li, L.
(2025). Lightweight semantic visual mapping and lo-
calization based on ground traffic signs. Displays, 90.
Liu, H., Xu, G., Liu, B., Li, Y., Yang, S., Tang, J., Pan,
K., and Xing, Y. (2025). A real time LiDAR-Visual-
Inertial object level semantic SLAM for forest envi-
ronments. ISPRS Journal of Photogrammetry and Re-
mote Sensing, 219:71–90.
Luo, Z., Yang, W., Yuan, Y., Gou, R., and Li, X. (2024). Se-
mantic segmentation of agricultural images: A survey.
Information Processing in Agriculture, 11:172–186.
Mo, Y., Wu, Y., Yang, X., Liu, F., and Liao, Y. (2022). Re-
view the state-of-the-art technologies of semantic seg-
mentation based on deep learning. Neurocomputing,
493:626–646.
Osei, I., Appiah-Kubi, B., Frimpong, B. K., Hayfron-
Acquah, J. B., Owusu-Agyemang, K., Ofori-Addo,
S., Turkson, R. E., and Mawuli, C. B. (2023). Multi-
modal Brain Tumor Segmentation Using Transformer
and UNET. 2023 20th International Computer Con-
ference on Wavelet Active Media Technology and In-
formation Processing, ICCWAMTIP 2023.
Pak, S., Park, S. G., Park, J., Choi, H. R., Lee, J. H., Lee,
W., Cho, S. T., Lee, Y. G., and Ahn, H. (2024). Appli-
cation of deep learning for semantic segmentation in
robotic prostatectomy: Comparison of convolutional
neural networks and visual transformers. Investigative
and clinical urology, 65:551–558.
Ravi, N., Gabeur, V., Hu, Y.-T., Hu, R., Ryali, C., Ma,
T., Khedr, H., R
¨
adle, R., Rolland, C., Gustafson, L.,
Mintun, E., Pan, J., Alwala, K. V., Carion, N., Wu,
C.-Y., Girshick, R., Doll
´
ar, P., Feichtenhofer, C., and
Fair, M. (2024). SAM 2: Segment Anything in Images
and Videos.
Sohail, A., Nawaz, N. A., Shah, A. A., Rasheed, S., Ilyas,
S., and Ehsan, M. K. (2022). A Systematic Litera-
ture Review on Machine Learning and Deep Learning
Methods for Semantic Segmentation. IEEE Access,
10:134557–134570.
Syam, R. F. K., Rachmawati, E., and Sulistiyo, M. D.
(2023). Whole-Body Bone Scan Segmentation Us-
ing SegFormer. 2023 10th International Conference
on Information Technology, Computer, and Electrical
Engineering, ICITACEE 2023, pages 419–424.
Thisanke, H., Deshan, C., Chamith, K., Seneviratne, S.,
Vidanaarachchi, R., and Herath, D. (2023). Seman-
tic segmentation using Vision Transformers: A sur-
vey. Engineering Applications of Artificial Intelli-
gence, 126.
Wang, J. J., Liu, Y. F., Nie, X., and Mo, Y. L. (2022). Deep
convolutional neural networks for semantic segmenta-
tion of cracks. Structural Control and Health Moni-
toring, 29.
Xu, G., Qian, X., Shao, H. C., Luo, J., Lu, W., and Zhang, Y.
(2025). A segment anything model-guided and match-
based semi-supervised segmentation framework for
medical imaging. Medical Physics.
Xu, Z., Guan, H., Kang, J., Lei, X., Ma, L., Yu, Y., Chen,
Y., and Li, J. (2022). Pavement crack detection from
CCD images with a locally enhanced transformer net-
work. International Journal of Applied Earth Obser-
vation and Geoinformation, 110.
Zhang, C., Han, D., Qiao, Y., Kim, J. U., Bae, S.-H., Lee,
S., and Hong, C. S. (2023). Faster Segment Anything:
Towards Lightweight SAM for Mobile Applications.
Zhang, W., Tang, P., and Zhao, L. (2021). Fast and accurate
land cover classification on medium resolution remote
sensing images using segmentation models. Interna-
tional Journal of Remote Sensing, 42:3277–3301.
Zhao, X., Ding, W., An, Y., Du, Y., Yu, T., Li, M., Tang, M.,
and Wang, J. (2023). Fast Segment Anything.
ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics
328