
Empirical Methods in Natural Language Processing,
pages 4729–4744, Singapore. Association for Compu-
tational Linguistics.
Kazakov, Y., Kr
¨
otzsch, M., and Siman
ˇ
c
´
ık, F. (2014). The
Incredible ELK. Journal of Automated Reasoning,
53(1):1–61.
Kenneweg, S., Deigmoeller, J., Eggert, J., and Cimiano, P.
(2025a). A factorized probabilistic model of the se-
mantics of vague temporal adverbials relative to dif-
ferent events. In Proceedings of the Annual Meeting
of the Cognitive Science Society, volume 47.
Kenneweg, S., Deigm
¨
oller, J., Cimiano, P., and Eggert, J.
(2025b). TRAVELER: A Benchmark for Evaluating
Temporal Reasoning across Vague, Implicit and Ex-
plicit References. arXiv:2505.01325 [cs].
Kenneweg, S., Jackson, B. B., Deigmoeller, J., Eggert, J.,
and Cimiano, P. (2024). An Empirical Study on Vague
Deictic Temporal Adverbials. In Zock, M., Chersoni,
E., Hsu, Y.-Y., and de Deyne, S., editors, Proceedings
of the Workshop on Cognitive Aspects of the Lexicon
@ LREC-COLING 2024, pages 26–31, Torino, Italia.
ELRA and ICCL.
K
¨
afer, T. and Harth, A. (2018). Specifying, Monitoring, and
Executing Workflows in Linked Data Environments.
In The Semantic Web – ISWC 2018: 17th Interna-
tional Semantic Web Conference, Monterey, CA, USA,
October 8–12, 2018, Proceedings, Part I, pages 424–
440, Berlin, Heidelberg. Springer-Verlag.
Lange, L., Str
¨
otgen, J., Adel, H., and Klakow, D. (2023).
Multilingual Normalization of Temporal Expressions
with Masked Language Models. arXiv:2205.10399
[cs].
Mavromatis, C., Subramanyam, P. L., Ioannidis, V. N.,
Adeshina, A., Howard, P. R., Grinberg, T., Hakim, N.,
and Karypis, G. (2022). TempoQR: Temporal Ques-
tion Reasoning over Knowledge Graphs. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
36(5):5825–5833. Number: 5.
May, U., Zaczynska, K., Moreno-Schneider, J., and
Rehm, G. (2021). Extraction and Normalization
of Vague Time Expressions in German. In Evang,
K., Kallmeyer, L., Osswald, R., Waszczuk, J., and
Zesch, T., editors, Proceedings of the 17th Confer-
ence on Natural Language Processing (KONVENS
2021), pages 114–126, D
¨
usseldorf, Germany. KON-
VENS 2021 Organizers.
McCrae, J. P., Spohr, D., and Cimiano, P. (2011). Link-
ing lexical resources and ontologies on the semantic
web with lemon. In Proceedings of the 8th extended
semantic web conference on The semantic web: re-
search and applications (ESWC), volume 6643, pages
245–259.
Neelam, S., Sharma, U., Karanam, H., Ikbal, S., Kapani-
pathi, P., Abdelaziz, I., Mihindukulasooriya, N., Lee,
Y.-S., Srivastava, S., Pendus, C., Dana, S., Garg, D.,
Fokoue, A., Bhargav, G. P. S., Khandelwal, D., Ravis-
hankar, S., Gurajada, S., Chang, M., Uceda-Sosa, R.,
Roukos, S., Gray, A., Riegel, G. L., Luus, F., and Sub-
ramaniam, L. V. (2021). SYGMA: System for Gen-
eralizable Modular Question Answering OverKnowl-
edge Bases. arXiv:2109.13430 [cs].
Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., and
Banerjee, J. (2015). RDFox: A Highly-Scalable
RDF Store. In Arenas, M., Corcho, O., Simperl,
E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth,
P., Dumontier, M., Heflin, J., Thirunarayan, K., and
Staab, S., editors, The Semantic Web - ISWC 2015,
pages 3–20, Cham. Springer International Publishing.
Pustejovsky, J. (2005). Time and the semantic Web. In 12th
International Symposium on Temporal Representation
and Reasoning (TIME’05), pages 5–8. ISSN: 2332-
6468.
Pustejovsky, J., Lee, K., Bunt, H., and Romary, L. (2010).
ISO-TimeML: An International Standard for Seman-
tic Annotation. In Calzolari, N., Choukri, K., Mae-
gaard, B., Mariani, J., Odijk, J., Piperidis, S., Ros-
ner, M., and Tapias, D., editors, Proceedings of the
Seventh International Conference on Language Re-
sources and Evaluation (LREC‘10), Valletta, Malta.
European Language Resources Association (ELRA).
Schilder, F. and Habel, C. (2001). From temporal expres-
sions to temporal information: semantic tagging of
news messages. In Proceedings of the workshop on
Temporal and spatial information processing -, vol-
ume 13, pages 1–8, Not Known. Association for Com-
putational Linguistics.
Schmidt, D. M., Elahi, M. F., and Cimiano, P. (2025). Lex-
icalization Is All You Need: Examining the Impact
of Lexical Knowledge in a Compositional QALD Sys-
tem. In Alam, M., Rospocher, M., van Erp, M.,
Hollink, L., and Gesese, G. A., editors, Knowledge
Engineering and Knowledge Management, pages
102–122, Cham. Springer Nature Switzerland.
Sharma, A., Saxena, A., Gupta, C., Kazemi, S. M., Taluk-
dar, P., and Chakrabarti, S. (2023). TwiRGCN: Tem-
porally Weighted Graph Convolution for Question
Answering over Temporal Knowledge Graphs. In
Proceedings of the 17th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 2049–2060. arXiv:2210.06281 [cs].
Solt, S. and Gotzner, N. (2012). Experimenting with degree.
In Semantics and Linguistic Theory, volume 22.
Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J. Z., and Hor-
rocks, I. (2005). Fuzzy OWL: Uncertainty and the
Semantic Web. In OWL: Experiences and Directions.
Str
¨
otgen, J. and Gertz, M. (2010). HeidelTime: High Qual-
ity Rule-Based Extraction and Normalization of Tem-
poral Expressions. In Erk, K. and Strapparava, C.,
editors, Proceedings of the 5th International Work-
shop on Semantic Evaluation, pages 321–324, Upp-
sala, Sweden. Association for Computational Linguis-
tics.
Su, M., Li, Z., Chen, Z., Bai, L., Jin, X., and Guo, J. (2024).
Temporal Knowledge Graph Question Answering: A
Survey. arXiv:2406.14191 [cs].
Van Jaarsveld, H. and Schreuder, R. (1985). Implicit quan-
tification of temporal adverbials. Journal of Seman-
tics, 4(4):327–339.
KEOD 2025 - 17th International Conference on Knowledge Engineering and Ontology Development
174