
REFERENCES
Alexopoulos, C., Ali, M., Maratsi, M. I., Rizun, N., Charal-
abidis, Y., Loukis, E., and Saxena, S. (2024). Assessing
the availability and interoperability of open govern-
ment data (ogd) supporting sustainable development
goals (sdgs) and value creation in the gulf cooperation
council (gcc). Quality & Quantity.
Androutsopoulou, M., Askounis, D., Carayannis, E. G., and
Zotas, N. (2024). Leveraging ai for enhanced egovern-
ment: Optimizing the use of open governmental data.
Journal of the Knowledge Economy.
Benjira, W., Atigui, F., Bucher, B., Grim-Yefsah, M., and
Travers, N. (2025). Automated mapping between sdg
indicators and open data: An llm-augmented knowl-
edge graph approach. Data & Knowledge Engineering,
156:102405.
Bronzini, M., Nicolini, C., Lepri, B., Passerini, A., and
Staiano, J. (2024). Glitter or gold? deriving structured
insights from sustainability reports via large language
models. EPJ Data Science, 13:41.
Cabral, B., Souza, M., and Claro, D. B. (2024). Open infor-
mation extraction with llm for the portuguese language.
LINGUAMATICA, 16:167–182.
Cort
´
es-Cediel, M. E., Segura-Tinoco, A., Cantador, I., and
Rodr
´
ıguez Bol
´
ıvar, M. P. (2023). Trends and chal-
lenges of e-government chatbots: Advances in explor-
ing open government data and citizen participation con-
tent. Government Information Quarterly, 40:101877.
Donner, C., Danala, G., Jentner, W., and Ebert, D. (2024).
Truext: Trustworthiness regressor unified explainable
tool. pages 5325–5334.
Dua, M., Singh, J. P., and Shehu, A. (2025). The ethics of
national artificial intelligence plans: an empirical lens.
AI and Ethics.
Germani, F., Spitale, G., and Biller-Andorno, N. (2024). The
dual nature of ai in information dissemination: Ethical
considerations. JMIR AI, 3.
Hannah, G., Sousa, R. T., Dasoulas, I., and d’Amato, C.
(2025). On the legal implications of large language
model answers: A prompt engineering approach and a
view beyond by exploiting knowledge graphs. Journal
of Web Semantics, 84:100843.
Kitchenham, B., Budgen, D., and Brereton, P. (2007). Guide-
lines for performing systematic literature reviews in
software engineering. Information and Software Tech-
nology, 49(5–6):481–495.
Kliimask, K. and Nikiforova, A. (2024). Tagify: Llm-
powered tagging interface for improved data findability
on ogd portals. page 18 – 27. Institute of Electrical and
Electronics Engineers Inc.
Mureddu, F., Paciaroni, A., Pavelka, T., Pemberton, A., and
Remotti, L. A. (2025). Rights and responsibilities: Le-
gal and ethical considerations in adopting local digital
twin technology. pages 291–317.
Nikiforova, A., Lnenicka, M., Mili
´
c, P., Luterek, M., and
Rodr
´
ıguez Bol
´
ıvar, M. P. (2024). From the evolution
of public data ecosystems to the evolving horizons of
the forward-looking intelligent public data ecosystem
empowered by emerging technologies. volume 14841
LNCS, page 402 – 418. Springer Science and Business
Media Deutschland GmbH.
Pesqueira, A., de Bem Machado, A., Bolog, S., Pereira,
R., and Sousa, M. J. (2024). Exploring the impact of
eu tendering operations on future ai governance and
standards in pharmaceuticals. Computers & Industrial
Engineering, 198:110655.
Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M. (2008).
Systematic mapping studies in software engineering.
International Conference on Evaluation and Assess-
ment in Software Engineering. Available via Research-
Gate.
Rizun, N., Revina, A., and Edelmann, N. (2025). Text
analytics for co-creation in public sector organizations:
a literature review-based research framework. Artificial
Intelligence Review, 58:125.
Sandoval-Almazan, R., Millan-Vargas, A. O., and Garcia-
Contreras, R. (2024). Examining public managers’
competencies of artificial intelligence implementation
in local government: A quantitative study. Government
Information Quarterly, 41:101986.
Shaw, M. (2003). Writing good software engineering re-
search papers. In Proceedings of the 25th International
Conference on Software Engineering, ICSE ’03, pages
726–736, Washington, DC, USA. IEEE Computer So-
ciety. Minitutorial.
Siciliani, L., Ghizzota, E., Basile, P., and Lops, P. (2024).
Oie4pa: open information extraction for the public
administration. J. Intell. Inf. Syst., 62(1):273–294.
Tornimbene, B., Rioja, Z. B. L., Brownstein, J., Dunn, A.,
Faye, S., Kong, J., Malou, N., Nordon, C., Rader, B.,
and Morgan, O. (2025). Harnessing the power of ar-
tificial intelligence for disease-surveillance purposes.
BMC Proceedings, 19:7.
Wang, S., Sun, K., and Zhai, Y. (2024). Dye4ai: Assur-
ing data boundary on generative ai services. page
2281–2295.
Large Language Models in Open Government Data Analysis: A Systematic Mapping Study
411