Mosadegh, B., Polygerinos, P., Keplinger, C., Wennstedt,
S., Shepherd, R. F., Gupta, U., Shim, J., Bertoldi, K.,
Walsh, C. J., & Whitesides, G. M. (2014). Pneumatic
networks for soft robotics that actuate rapidly.
Advanced Functional Materials, 24(15), 2163–2170
Navas, E., Fernandez, R., Sepúlveda, D., Armada, M., &
Gonzalez-de Santos, P. (2021). Soft grippers for
automatic crop harvesting: A review. Sensors, 21(8),
2689.
Ogden, R. W. (1997). Nonlinear elastic deformations (2nd
ed.). Dover Publications.
Polygerinos, P., Wang, Z., Overvelde, J. T. B., Galloway,
K. C., Wood, R. J., Bertoldi, K., & Walsh, C. J. (2015).
Modeling of soft fiber-reinforced bending actuators.
IEEE Transactions on Robotics, 31(3), 778–789.
Qin, L., Peng, H., Huang, X., Liu, M., & Huang, W. (2023).
Modeling and simulation of dynamics in soft robotics:
A review of numerical approaches. Current Robotics
Reports, 5(1), 1–13.
Rogóż, M., Zeng, H., Xuan, C., Wiersma, D. S., &
Wasylczyk, P. (2016). Soft robotics: Light-driven soft
robot mimics caterpillar locomotion in natural scale.
Advanced Optical Materials, 4(11), 1902–1906.
Singh, K. S., & Asokan, T. (2019, October). Design and
analysis of a soft bidirectional bending actuator for
human-robot interaction applications. In 2019 28th
IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN) (pp. 1–6).
IEEE.
Song, E. J., Lee, J. S., Moon, H., Choi, H. R., & Koo, J. C.
(2021). A multi-curvature, variable stiffness soft
gripper for enhanced grasping operations. Actuators,
10(12), 316.
Su, H., Hou, X., Zhang, X., Qi, W., Cai, S., Xiong, X., &
Guo, J. (2022). Pneumatic soft robots: Challenges and
benefits. Actuators, 11(3), 92.
Sun, Y., Zhang, Q., Chen, X., & Chen, H. (2019). An
optimum design method of Pneu-Net actuators for
trajectory matching utilizing a bending model and GA.
Journal of Robotics, 2019, 6721897.
Tang, X., Li, H., Ma, T., Yang, Y., Luo, J., Wang, H., &
Jiang, P. (2022). A review of soft actuator motion:
Actuation, design, manufacturing and applications.
Actuators, 11(11), 331.
Wu, Y., Yim, J. K., Liang, J., Shao, Z., Qi, M., Zhong, J.,
& Lin, L. (2019). Insect-scale fast-moving and
ultrarobust soft robot. Science Robotics, 4(32),
eaax1594.
Yang, F., Ruan, Q., Man, Y., Xie, Z., Yue, H., Li, B., & Liu,
R. (2020). Design and optimize of a novel segmented
soft pneumatic actuator. IEEE Access, 8, 3006865–
3006877.
Yeoh, O. H. (1993). Some forms of the strain energy
function for rubber. Rubber Chemistry and Technology,
66(5), 754–771.
Zhang, H., Kumar, S., Chen, F., Fuh, J. Y. H., & Wang, M.
Y. (2019). Topology optimized multimaterial soft
fingers for applications on grippers, rehabilitation, and
artificial hands. IEEE/ASME Transactions on
Mechatronics, 24(1), 120–131.
Zhang, J., Wang, T., & Hong, J. (2017). Review of soft-
bodied manipulator.
Journal of Mechanical
Engineering, 53(13), 19–28.
Zaidi, S., Maselli, M., Laschi, C., & Cianchetti, M. (2021).
Actuation technologies for soft robot grippers and
manipulators: A review. Current Robotics Reports,
2(3), 167–181.