
Bast, H. and Buchhold, B. (2017). Qlever: A query engine
for efficient sparql+ text search. In Proceedings of the
2017 ACM on Conference on Information and Knowl-
edge Management, pages 647–656.
Berant, J., Chou, A., Frostig, R., and Liang, P. (2013).
Semantic parsing on freebase from question-answer
pairs. In Proceedings of the 2013 conference on em-
pirical methods in natural language processing, pages
1533–1544.
Bustamante, D. and Takeda, H. (2024). Sparql generation
with entity pre-trained gpt for kg question answering.
arXiv preprint arXiv:2402.00969.
Cui, H., Peng, T., Han, R., Han, J., and Liu, L. (2023). Path-
based multi-hop reasoning over knowledge graph
for answering questions via adversarial reinforcement
learning. Knowledge-Based Systems, 276:110760.
Ghanem, H. and Cruz, C. (2024). Fine-Tuning vs. Prompt-
ing: Evaluating the Knowledge Graph Construction
with LLMs. In CEUR Workshop Proceedings, volume
3747 of TEXT2KG-DQMLKG-24 ( TEXT2KG 2024
and DQMLKG 2024 ) 3rd International workshop one
knowledge graph generation from text. Data Qual-
ity meets Machine Learning and Knowledge Graphs
2024, page 7, Hersonissos, Greece.
Hovcevar, D. and Kenda, K. (2024). Integrating Knowledge
Graphs and Large Language Models for Querying in
an Industrial Environment. PhD thesis, Bachelor’s
Thesis. University of Ljubljana, Faculty of Computer,
Information.
Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. (2021). Lora: Low-rank
adaptation of large language models. arXiv preprint
arXiv:2106.09685.
Huang, X., Zhang, J., Li, D., and Li, P. (2019). Knowledge
graph embedding based question answering. In Pro-
ceedings of the twelfth ACM international conference
on web search and data mining, pages 105–113.
Jiang, L., Yan, X., and Usbeck, R. (2023). A struc-
ture and content prompt-based method for knowledge
graph question answering over scholarly data. In
QALD/SemREC@ ISWC.
Jin, B., Yoon, J., Han, J., and Arik, S. O. (2024). Long-
context llms meet rag: Overcoming challenges for
long inputs in rag. arXiv preprint arXiv:2410.05983.
Joren, H., Zhang, J., Ferng, C.-S., Juan, D.-C., Taly, A.,
and Rashtchian, C. (2024). Sufficient context: A new
lens on retrieval augmented generation systems. arXiv
preprint arXiv:2411.06037.
Kakalis, E.-P. D. and Kefalidis, S.-A. (2024). Advancing
geosparql query generation on yago2geo: Leverag-
ing large language models and automated uri injection
from natural language questions.
Lehmann, J., Meloni, A., Motta, E., Osborne, F., Recu-
pero, D. R., Salatino, A. A., and Vahdati, S. (2024).
Large language models for scientific question answer-
ing: An extensive analysis of the sciqa benchmark.
In The Semantic Web: 21st International Conference,
ESWC 2024, Hersonissos, Crete, Greece, May 26–30,
2024, Proceedings, Part I, page 199–217. Springer-
Verlag.
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rock-
täschel, T., et al. (2020). Retrieval-augmented gen-
eration for knowledge-intensive nlp tasks. Advances
in neural information processing systems, 33:9459–
9474.
Liu, J., Shen, D., Zhang, Y., Dolan, W. B., Carin, L., and
Chen, W. (2022). What makes good in-context ex-
amples for gpt-3? In Proceedings of Deep Learn-
ing Inside Out (DeeLIO 2022): The 3rd Workshop
on Knowledge Extraction and Integration for Deep
Learning Architectures, pages 100–114.
Meyer, L.-P., Frey, J., Brei, F., and Arndt, N. (2024). As-
sessing sparql capabilities of large language models.
arXiv preprint arXiv:2409.05925.
Muralidharan, B., Beadles, H., Marzban, R., and Muppa-
raju, K. S. (2024). Knowledge ai: Fine-tuning nlp
models for facilitating scientific knowledge extraction
and understanding.
Omar, R., Mangukiya, O., Kalnis, P., and Mansour, E.
(2023). Chatgpt versus traditional question answer-
ing for knowledge graphs: Current status and future
directions towards knowledge graph chatbots. arXiv
preprint arXiv:2302.06466.
Perevalov, A., Diefenbach, D., Usbeck, R., and Both, A.
(2022). Qald-9-plus: A multilingual dataset for ques-
tion answering over dbpedia and wikidata translated
by native speakers. In 2022 IEEE 16th International
Conference on Semantic Computing (ICSC), pages
229–234. IEEE.
Pliukhin, D., Radyush, D., Kovriguina, L., and Mouromt-
sev, D. (2023). Improving subgraph extraction algori-
htms for one-shot sparql query generation with large
language models. In QALD/SemREC@ ISWC.
Taffa, T. A. and Usbeck, R. (2023). Leveraging llms in
scholarly knowledge graph question answering. In
QALD/SemREC@ ISWC.
Trivedi, P., Maheshwari, G., Dubey, M., and Lehmann, J.
(2017). Lc-quad: A corpus for complex question
answering over knowledge graphs. In The Semantic
Web–ISWC 2017: 16th International Semantic Web
Conference, Vienna, Austria, October 21-25, 2017,
Proceedings, Part II 16, pages 210–218. Springer.
Wang, J., Chang, Y., Li, Z., An, N., Ma, Q., Hei, L., Luo,
H., Lu, Y., and Ren, F. (2024a). Techgpt-2.0: A large
language model project to solve the task of knowledge
graph construction.
Wang, Y., Lipka, N., Rossi, R. A., Siu, A., Zhang, R., and
Derr, T. (2024b). Knowledge graph prompting for
multi-document question answering. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 19206–19214.
Yasunaga, M., Ren, H., Bosselut, A., Liang, P., and
Leskovec, J. (2021). Qa-gnn: Reasoning with lan-
guage models and knowledge graphs for question an-
swering. arXiv preprint arXiv:2104.06378.
FIRESPARQL: A LLM-Based Framework for SPARQL Query Generation over Scholarly Knowledge Graphs
133