cant effectiveness of the approach, revealing the in-
terplay between VPR accuracy, sampling efficiency,
and computational cost.
Our investigation focused on a near-worst-case
scenario where all teachers are black bo xes and all
robots have limited initial performan ce. For practi-
cal deployment, future work should explore leverag-
ing heterogen e ous teach er models, including white-
box and high-pe rforming teachers, to further enhance
learning. Moreover, improving VPR performance
may benefit from several well-k nown extension s: (1)
advancing from grid-based to adaptive workspace
partitioning for place definitions, (2) exten ding from
single-view to multi-view VPR, and (3) shifting from
passive to active VPR with r obot control.
Immediate f uture directions in c lude applying
these a dvancements to challenging real-world tasks
and addressing the lost robot problem to realize robust
long-ter m autonomy in open-world environments.
REFERENCES
Buzaglo, G., Haim, N., Yehudai, G., Vardi, G., Oz, Y.,
Nikankin, Y., and Irani, M. (2023). Deconstruct-
ing data reconstruction: Multiclass, weight decay and
general losses. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA , USA, December 10 - 16, 2023.
Cabrera-Ponce, A. A., Martin-Ortiz, M., and Martinez-
Carranza, J. (2023). Continual learning for topolog-
ical geo-localisation. Journal of Intelligent & Fuzzy
Systems, 44(6):10369–10381.
Carlevaris-Bianco, N., Ushani, A. K., and Eustice, R. M.
(2016). University of michigan north campus long-
term vision and li dar dataset. Int. J. Robotics Res.,
35(9):1023–1035.
Casado, F. E., Lema, D., Iglesias, R., Regueiro, C. V., and
Barro, S. (2020). Collaborative and continual learning
for classification tasks in a society of devices. arXiv
preprint arXiv:2006.07129.
Chen, H., Wang, Y., Xu, C., Yang, Z., Liu, C., Shi, B., Xu,
C., X u, C., and Tian, Q. (2019). Data-free learning of
student networks. In 2019 IEEE/CVF International
Conference on Computer Vision, pages 3513–3521.
IEEE.
Chen, L.-C., Zhu, Y., Papandreou, G. , Schroff, F., and
Adam, H. (2018). Encoder-decoder with atrous sep-
arable convolution for semantic image segmentation.
In ECCV.
Fredrikson, M., Jha, S., and Ristenpart, T. (2015). Model
inversion attacks that exploit confidence information
and basic countermeasures. In Proceedings of the
22nd ACM SIGSAC conference on computer and com-
munications security, pages 1322–1333.
Gao, D., Wang, C., and Scherer, S. (2022). Airloop: Life-
long loop closure detection. In 2022 International
Conference on Robotics and Automation (ICRA),
pages 10664–10671. IEEE.
Garcia-Fidalgo, E. and Ortiz, A. ( 2018). ibow-lcd: An
appearance-based loop-closure detection approach us-
ing incremental bags of binary words. IEEE Robotics
Autom. Lett., 3(4):3051–3057.
Hinton, G. E., Vinyals, O., and Dean, J. (2015). Dis-
tilling the knowledge in a neural network. CoRR,
abs/1503.02531.
Hiroki, T. and Tanaka, K. (2019). Long-term knowledge
distillation of visual place classifiers. In 2019 IEEE
Intelligent Transportation Systems Conference, ITSC,
pages 541–546. IEEE.
Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P. S ., and Zhang,
X. (2022). Membership inference attacks on machine
learning: A survey. ACM Computing Surveys (CSUR),
54(11s):1–37.
Isele, D. and Cosgun, A. (2018). Selective experience
replay for lifelong learning. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelli-
gence (AAAI-18), pages 3302–3309. AA A I Press.
Kang, M., Z hang, J., Zhang, J., Wang, X., Chen, Y., Ma, Z.,
and Huang, X . (2023). Alleviating catastrophic forget-
ting of incremental object detection via within-class
and between-class knowledge distillat ion. In 2023
IEEE/CVF I nternational Conference on Computer Vi-
sion (ICCV), pages 18848–18858.
Kim, G., Park, B., and Ki m, A. (2019). 1-day learning,
1-year localization: Long-term lidar localization us-
ing scan context image. IEEE Robotics Autom. Lett.,
4(2):1948–1955.
Ko, M., Jin, M., Wang, C., and Jia, R. (2023). Practi-
cal membership inference attacks against large-scale
multi-modal models: A pilot study. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pages 4871–4881.
Lange, M. D., Aljundi, R., Masana, M., Parisot, S., Jia,
X., Leonardis, A. , S labaugh, G. G., and Tuytelaars, T.
(2022). A continual l earning survey: Defying forget-
ting in classification tasks. IEEE Trans. Pattern Anal.
Mach. Intell., 44(7):3366–3385.
Lesort, T., Lomonaco, V., Stoian, A., Maltoni, D., Fil-
liat, D., and D´ıaz-Rodr´ıguez, N. (2020). Continual
learning for robotics: Definition, framework, learning
strategies, opportunities and challenges. Information
fusion, 58:52–68.
Liu, Y., Zhang, W., Wang, J., and Wang, J. ( 2021).
Data-free knowledge transfer: A survey. CoRR,
abs/2112.15278.
Lomonaco, V., Pellegrini, L., R odriguez, P., Caccia, M.,
She, Q., Chen, Y., Jodelet, Q., Wang, R., Mai, Z.,
Vazquez, D., et al. (2022). Cvpr 2020 continual learn-
ing in computer vision competition: Approaches, re-
sults, current challenges and future directions. Artifi-
cial Intelligence, 303:103635.
Lowry, S. M., S¨underhauf, N., Newman, P., Leonard, J. J.,
Cox, D. D., Corke, P. I., and Milford, M. J. (2016).
Visual place recognition: A survey. IEEE Trans.
Robotics, 32(1):1–19.