
DEL VICERRECTORADO DE INVESTIGACI
´
ON
Y TRANSFERENCIA” of the Miguel Hern
´
andez
University; the project PID2023-149575OB-I00
funded by MICIU/AEI/10.13039/501100011033 and
by FEDER, UE; and the project CIPROM/2024/8,
funded by Generalitat Valenciana, Conselleria de Ed-
ucaci
´
on, Cultura, Universidades y Empleo (program
PROMETEO 2025).
REFERENCES
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. (2020). End-to-end object de-
tection with transformers. In Vedaldi, A., Bischof, H.,
Brox, T., and Frahm, J.-M., editors, Computer Vision
– ECCV 2020, pages 213–229, Cham. Springer Inter-
national Publishing.
Diwan, T., Anirudh, G., and Tembhurne, J. V. (2023). Ob-
ject detection using yolo: challenges, architectural
successors, datasets and applications. Multimedia
Tools and Applications, 82(6):9243–9275.
Elmasry, S. A., Awad, W. A., and Abd El-hafeez, S. A.
(2020). Review of different image fusion techniques:
Comparative study. In Ghalwash, A. Z., El Khameesy,
N., Magdi, D. A., and Joshi, A., editors, Internet of
Things—Applications and Future, pages 41–51, Sin-
gapore. Springer Singapore.
Heredia-Aguado, E., Cabrera, J. J., Jim
´
enez, L. M., Va-
liente, D., and Gil, A. (2025). Static early fusion tech-
niques for visible and thermal images to enhance con-
volutional neural network detection: A performance
analysis. Remote Sensing, 17(6).
Hwang, S., Park, J., Kim, N., Choi, Y., and Kweon, I. S.
(2015). Multispectral pedestrian detection: Bench-
mark dataset and baseline. In 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 1037–1045.
Indira, K. (2015). Image fusion for pet ct images using
average maximum and average contrast rules. Int J
Appl Eng Res, 10(1):673–80p.
Jia, X., Zhu, C., Li, M., Tang, W., and Zhou, W. (2021).
Llvip: A visible-infrared paired dataset for low-light
vision. In Proceedings of the IEEE/CVF International
Conf. on Computer Vision, pages 3496–3504.
Jiang, P., Ergu, D., Liu, F., Cai, Y., and Ma, B. (2022). A re-
view of yolo algorithm developments. Procedia Com-
puter Science, 199:1066–1073. The 8th International
Conference on Information Technology and Quantita-
tive Management (ITQM 2020 & 2021): Developing
Global Digital Economy after COVID-19.
Jocher, G., Chaurasia, A., and Qiu, J. (2023). YOLOv8 by
Ultralytics.
Joliffe, I. and Morgan, B. (1992). Principal component
analysis and exploratory factor analysis. Statistical
Methods in Medical Research, 1(1):69–95. PMID:
1341653.
Kumar, S. S. and Muttan, S. (2006). PCA-based image
fusion. In Shen, S. S. and Lewis, P. E., editors,
Algorithms and Technologies for Multispectral, Hy-
perspectral, and Ultraspectral Imagery XII, volume
6233, page 62331T. International Society for Optics
and Photonics, SPIE.
Ma, J. and Plonka, G. (2010). The curvelet transform.IEEE
Signal Processing Magazine, 27(2):118–133.
McInnes, L., Healy, J., and Melville, J. (2020). Umap: Uni-
form manifold approximation and projection for di-
mension reduction.
Ofir, N. (2023). Multispectral image fusion based on su-
per pixel segmentation. In ICASSP 2023 - 2023 IEEE
International Conf. on Acoustics, Speech and Signal
Processing (ICASSP), pages 1–5.
Patil, V., Sale, D., and Joshi, M. (2013). Image fusion meth-
ods and quality assessment parameters. Asian Journal
of Engineering and Applied Technology, 2:40–45.
Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster r-
cnn: Towards real-time object detection with region
proposal networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39(6):1137–1149.
Sahu, V. and Sahu, D. (2014). Image fusion using wavelet
transform: A review. Global Journal of Computer Sci-
ence and Technology, 14(F5):21–28.
Sifuzzaman, M., Islam, R., and Ali, M. (2009). Appli-
cation of wavelet transform and its advantages com-
pared to fourier transform. Journal of Physical Sci-
ence, 13:121–134.
Starck, J.-L., Candes, E., and Donoho, D. (2002). The
curvelet transform for image denoising. IEEE Trans-
actions on Image Processing, 11(6):670–684.
Van der Maaten, L. and Hinton, G. (2008). Visualizing data
using t-SNE. Journal of machine learning research,
9(11).
Zhang, D. (2019). Wavelet Transform, pages 35–44.
Springer International Publishing, Cham.
ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics
320