
pages 5636–5646, Hong Kong, China. Association for
Computational Linguistics.
Ekstrand, M. D., Das, A., Burke, R., and Diaz, F. (2022).
Fairness in information access systems. Found. Trends
Inf. Retr., 16(1-2):1—-177.
Epstein, R. and Robertson, R. E. (2015). The search engine
manipulation effect (seme) and its possible impact on
the outcomes of elections. Proceedings of the Na-
tional Academy of Sciences, 112(33):E4512–E4521.
Gezici, G., Lipani, A., Saygın, Y., and Yilmaz, E. (2021).
Evaluation metrics for measuring bias in search en-
gine results. Information Retrieval Journal, 24(2):85–
113.
Gharahighehi, A., Vens, C., and Pliakos, K. (2021). Fair
multi-stakeholder news recommender system with hy-
pergraph ranking. Information Processing & Manage-
ment, 58(5):102663.
Herman, E. S. and Chomsky, N. (1988). Manufacturing
Consent: The Political Economy of the Mass Media.
Pantheon Books, New York, NY, USA, 1st edition.
Hu, D., Jiang, S., E. Robertson, R., and Wilson, C. (2019).
Auditing the partisanship of google search snippets. In
The World Wide Web Conference, WWW ’19, pages
693–704, New York, NY, USA. ACM.
Jaenich, T., McDonald, G., and Ounis, I. (2024). Fairness-
aware exposure allocation via adaptive reranking. In
Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval, SIGIR 2024, pages 1504–1513, New
York, NY, USA. ACM.
Järvelin, K. and Kekäläinen, J. (2002). Cumulated gain-
based evaluation of IR techniques. ACM Trans. Inf.
Syst., 20(4):422–446.
Joachims, T. (2002). Optimizing search engines using
clickthrough data. In Proceedings of the Eighth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, July 23-26, 2002,
Edmonton, Alberta, Canada, pages 133–142. ACM.
Kulshrestha, J., Eslami, M., Messias, J., Zafar, M. B.,
Ghosh, S., Gummadi, K. P., and Karahalios, K.
(2019). Search bias quantification: investigating polit-
ical bias in social media and web search. Information
Retrieval Journal, 22(1–2):188–227.
Lauw, H. W., Lim, E.-P., and Wang, K. (2006). Bias
and controversy: beyond the statistical deviation. In
Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, KDD 2006, pages 625–630, New York, NY, USA.
ACM.
Leidner, J. L. and Callison-Burch, C. (2003). Evaluating
question answering systems using FAQ answer injec-
tion. In Proceedings of the 6th Annual CLUK Re-
search Colloquium, CLUK.
Lippmann, W. (1922). Public Opinion. Harcourt, Brace &
Co., New York. First edition.
Martin, G. J. and Yurukoglu, A. (2017). Bias in cable news:
Persuasion and polarization. The American Economic
Review, 107(9):2565–2599.
Menzner, T. and Leidner, J. L. (2024a). Biasscanner: Au-
tomatic detection and classification of news bias to
strengthen democracy. Cornell University ArXiv pre-
print server (accessed 2024-07-30).
Menzner, T. and Leidner, J. L. (2024b). Experiments in
news bias detection with pre-trained neural transform-
ers. In Proceedings of the 46th European Confer-
ence in Information Retrieval (ECIR 2024), Glasgow,
UK, March 24-28, 2024, volume IV of Lecture Notes
in Computer Science (LNCS 14611), pages 270–284,
Cham, Switzerland. Springer Nature.
Menzner, T. and Leidner, J. L. (2024c). Improved mod-
els for media bias detection and subcategorization. In
Natural Language Processing and Information Sys-
tems:Proceedings of the 29th International Confer-
ence on Applications of Natural Language to Infor-
mation Systems, NLDB 2024 Turin, Italy, June 25–27,
2024, Proceedings, Part I, volume 14762 of Lecture
Notes in Computer Science, LNCS, pages 181–196.
Menzner, T. and Leidner, J. L. (2025). Automatic news bias
classification for strengthening democracy. In Pro-
ceedings of the 47th European Conference on Infor-
mation Retrieval (ECIR). Accepted for publication.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space.
Ovaisi, Z., Ahsan, R., Zhang, Y., Vasilaky, K., and Zheleva,
E. (2020). Correcting for selection bias in learning-to-
rank systems. In Proceedings of The Web Conference
2020, WWW 2020, pages 1863–1873, New York, NY,
USA. ACM.
Paramita, M. L., Kasinidou, M., and Hopfgartner, F. (2022).
Base: a bias-aware news search engine for improving
user awareness (prototype). In Biennial Conference
on Design of Experimental Search & Information Re-
trieval Systems.
Park, S., Kang, S., Chung, S., and Song, J. (2012). A com-
putational framework for media bias mitigation. ACM
Trans. Interact. Intell. Syst., 2(2):1–32.
Raj, A. and Ekstrand, M. D. (2022). Measuring fairness in
ranked results: An analytical and empirical compar-
ison. In Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’22, pages 726—-736,
New York, NY, USA. ACM.
Ratz, L., Schedl, M., Kopeinik, S., and Rekabsaz, N.
(2024). Measuring bias in search results through re-
trieval list comparison. In Proceedings of the 46th
European Conference on Information Retrieval (ECIR
2024), Glasgow, UK, March 24–28, 2024, Proceed-
ings, Part V, pages 20–34, Heidelberg, Germany.
Springer-Verlag.
Sanfilippo, S. (2009). Redis in-memory data structure
server. (accessed 2024-11-04).
Sapiezynski, P., Zeng, W., Robertson, R. E., Mislove, A.,
and Wilson, C. (2019). Quantifying the impact of user
attentionon fair group representation in ranked lists.
In Companion of The 2019 World Wide Web Confer-
ence, WWW 2019, San Francisco, CA, USA, May 13-
17, 2019, pages 553–562. Association for Computing
Machinery (ACM).
Spinde, T., Rudnitckaia, L., Mitrovi
´
c, J., Hamborg, F.,
Granitzer, M., Gipp, B., and Donnay, K. (2021).
KDIR 2025 - 17th International Conference on Knowledge Discovery and Information Retrieval
446