continuous learning through periodic model
retraining. Predictions and alerts will be stored in
MongoDB and visualized through real-time
dashboards in Moodle.
ACKNOWLEDGEMENTS
The authors would like to thank Karim Issa and Omar
Metlej for their major contribution to the project. The
authors also acknowledge the use of OpenAI
ChatGPT, for assistance with summarizing content
and refining the language during the preparation of
this paper.
REFERENCES
Aammou et al., “Smart agent-based educational system
using NLP for personalized feedback in Moodle LMS,”
*Br. J. Educ. Technol. Syst.*, vol. 12, no. 1, 2024.
[Online]. Available: https://www.brajets.com/index
.php/brajets/article/view/1723
Alam, R., F. Nugraha, G. Rohmat, and I. Darmawan,
“Event-driven architecture to improve performance and
scalability in microservices-based systems,” in *Proc.
IEEE ICADEIS*, 2022, doi: 10.1109/ICADEIS
56544.2022.10037390.
Amo, D., S. Cea, N. M. Jimenez, P. Gomez, and D.
Fonseca, “A privacy-oriented local web learning
analytics JavaScript library with a configurable schema
to analyze any edtech log: Moodle’s case study,”
Sustainability, vol.13, no.9, 2021, doi:10.3390/su1309
5085.
Chaffai, A.; “Real-time analysis of students’ activities on
an e-learning platform based on Apache Spark,”
*Academia.edu*, 2023. [Online]. Available:
https://www.academia.edu/109325203
European Union, “Regulation (EU) 2016/679 (General
Data Protection Regulation),” *Off. J. Eur. Union*,
2016. [Online]. Available: https://eur-lex.europa.eu/
legal-content/EN/TXT/?uri=celex:32016R0679
Gamage et al., “The impact of Moodle LMS integration on
group discussions to support collaborative learning,”
*ResearchGate*, 2022. [Online]. Available: https://
www.researchgate.net/publication/382848020
GitHub, “php-rdkafka.” [Online]. Available: https://github.
com/arnaud-lb/php-rdkafka
Han, W., Z. Shang, and K. Wolter, “Learning to reliably
deliver streaming data with Apache Kafka,” in *Proc.
IEEE/IFIP DSN*, 2020, doi:10.1109/DSN48063.2020.
00068.
Johan, E., W. Prakasa, A. Hanani, F. Rohman, and S. N.
Utama, “Improving Moodle performance using
HAProxy and MariaDB Galera Cluster,” *Appl. Inf.
Syst. Manag*, vol. 7, no. 1, 2024, doi: 10.15408/
aism.v7i1.34871.
Khriji, S., Y. Benbelgacem, R. Cheour, D. El Houssaini,
and O. Kanoun, “Design and implementation of a
cloud-based event-driven architecture for real-time data
processing in wireless sensor networks,” *J. Super
comput*, 2021, doi: 10.1007/s11227-021-03955-6.
Kiran, V. N. S., “Event-Driven architecture: Building res-
ponsive and scalable systems,” *Int. J. Sci. Res.*, vol.
10, no. 7, 2021, doi: 10.21275/sr24716231109.
Kommera, A. R., “The power of event-driven architecture:
Enabling real-time systems and scalable solutions,”
*Turk. J. Comput. Math. Educ.*, vol. 11, no. 1, 2020,
doi: 10.61841/turcomat.v11i1.14928.
Malviya, R. K., V. Mandala, S. Lekkala, and M. S. Reddy,
“Event-riven integration in multi-cloud and hybrid
architectures: Ensuring data consistency and
performance,” *SSRN*, 2025, doi:10.2139/ssrn.508
0809.
Martin et al., T. K. “Learning analytics in STEM education:
The role of Moodle tools for monitoring engagement,”
*Int. J. STEM Educ.*, vol. 8, no. 12, 2021. [Online].
Available: https://link.springer.com/article/10.1186/
s40 594-021-00323-x
Moodle, “Moodle Learning Platform.” [Online]. Available:
https://docs.moodle.org/
Moodle Docs, “Events API.” [Online]. Available:
https://docs.moodle.org/dev/Events_API
MongoDB Inc., “Read and Write Concerns,” MongoDB
Manual, 2024. [Online]. Available: https://www.
mongodb.com/docs/manual/core/replica-set-read-write
-concerns
Sáiz-Manzanares, M. C., J. J. Rodríguez-Díez, J. F. Díez-
Pastor, S. Rodríguez-Arribas, R. Marticorena-Sánchez,
and Y. P. Ji, “Monitoring of student learning in learning
management systems: An application of educational
data mining techniques,” *Appl. Sci.*, 2021, doi:
10.3390/app11062677.
Sanjana, N., R. Sinchana, V. Prabhu, and S. Sandhya,
“Real-time event streaming for financial enterprise
systems with Kafka,” in *Proc. IEEE AsianCon*, 2023,
doi: 10.1109/ASIANCON58793.2023.10270532.
Santos, J. L., “Streamlining enterprise data processing,
reporting and real-time alerting using Apache Kafka,”
in *Proc. IEEE ISDFS*, 2023, doi: 10.1109
/ISDFS58141.2023.10131800.
Theofanis, P., C. Raptis, C. Cicconetti, and A. Passarella,
“Efficient topic partitioning of Apache Kafka for high-
reliability real-time data streaming applications,”
*Future Gener. Comput. Syst.*, 2024, doi:
10.1016/j.future.2023.12.028.
Zhou, Z., L. Zhou, and Z. Chen, “A distributed real-time
monitoring scheme for air pressure stream data based
on Kafka,” *Appl. Sci.*, vol. 14, no. 12, 2024, doi:
10.3390/app14124967.