Looking forward, this work establishes a
foundation for advanced legal AI capabilities
including automated legal reasoning, multi-
jurisdictional analysis, and integration with
professional legal practice. The demonstrated success
of domain-specific RAG architectures in legal
applications suggests promising directions for AI-
assisted legal services that balance accessibility with
professional accuracy requirements.
ACKNOWLEDGEMENT
The authors would like to thank the legal
professionals and law students who participated in the
user studies. We also acknowledge the support from
the Industrial University of Ho Chi Minh City, Ho
Chi Minh City University of Law, and Academy of
Public Administration and Governance for providing
access to legal documents and expertise. Special
thanks to the legal experts who validated the Q&A
pairs and provided valuable feedback during the
system evaluation.
REFERENCES
Ashley, K. D. (2017). Artificial Intelligence and Legal
Analytics: New Tools for Law Practice in the Digital
Age. Cambridge University Press.
Baeza-Yates, R., & Ribeiro-Neto, B. (2011). Modern
Information Retrieval: The Concepts and Technology
behind Search (2nd ed.). Addison Wesley.
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019).
BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers) (pp.
4171-4186). Association for Computational
Linguistics.
Es, S., James, J., Anke, L. E., & Schockaert, S. (2023).
Ragas: Automated evaluation of retrieval augmented
generation (pp. 150-158).
Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y.,
Sun, J., & Wang, H. (2023). Retrieval-augmented
generation for large language models: A survey. arXiv
preprint arXiv:2312.10997.
Gillespie, J. (2006). Transplanting Commercial Law
Reform: Developing a 'Rule of Law' in Vietnam.
Ashgate Publishing.
Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L.,
Edunov, S., Chen, D., & Yih, W. T. (2020). Dense
passage retrieval for open-domain question answering.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP)
(pp. 6769-6781). Association for Computational
Linguistics.
Kim, M. Y., Xu, Y., & Goebel, R. (2017). COLIEE-2017:
evaluation of the competition on legal information
extraction and entailment. In JSAI International
Symposium on Artificial Intelligence (pp. 177-192).
Springer.
Lawlor, R. C. (2017). Engineering the law: A lawyer's
guide to emerging technologies. American Bar
Association.
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., Yih, W. T.,
Rocktäschel, T., Riedel, S., & Kiela, D. (2020).
Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in neural information
processing systems, 33, 9459-9474.
Lin, C. Y. (2004). Rouge: A package for automatic
evaluation of summaries (pp. 74-81).
Manning, C., Raghavan, P., & Schütze, H. (2008).
Introduction to information retrieval. Cambridge
University Press.
Nguyen, D. Q., & Nguyen, A. T. (2020). PhoBERT: Pre-
trained language models for Vietnamese. arXiv preprint
arXiv:2003.00744.
Nogueira, R., & Cho, K. (2019). Passage Re-ranking with
BERT. arXiv preprint arXiv:1901.04085.
Pasquale, F. (2015). The Algorithmic Society: Law, Market
and Technological Regulation. Yale University Press.
Thuvienphapluat.vn. (2024). Vietnam Legal Document
Database. https://thuvienphapluat.vn/
Van Opijnen, M., & Santos, C. (2017). On the concept of
relevance in legal information retrieval. Artificial
Intelligence and Law, 25(1), 65-87.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017).
Attention is all you need. Advances in neural
information processing systems, 30.
VBQPPL. (2024). National Database of Legal Documents
of Vietnam. https://vbpl.vn/pages/portal.aspx
Wang, J., Yi, X., Guo, R., Jin, H., Xu, P., Li, S., Wang, X.,
Guo, X., Li, C., Xu, X., Yu, K., Yuan, R., Zou, S., Qiu,
J., & Peng, J. (2021). Milvus: A Purpose-Built Vector
Data Management System. In Proceedings of the 2021
International Conference on Management of Data (pp.
2614-2627).
Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y.,
Min, Y., Zhang, B., Zhang, J., & Dong, Z. (2023). A
survey of large language models. arXiv preprint
arXiv:2303.18223.