
based recommender systems. volume 34, pages 3549–
3568. IEEE.
Hartig, O., Champin, P.-A., Kellogg, G., and Seaborne, A.
(2021). RDF-star and SPARQL-star. W3c community
group final report, W3C.
Hees, J. (2018). Simulating Human Associations with
Linked Data. doctoralthesis, Technische Universität
Kaiserslautern.
Hidi, S. (2006). Interest: A unique motivational variable.
Educational Research Review, 1(2):69–82.
Hilderman, R. J. and Hamilton, H. J. (1999). Knowledge
Discovery and Interestingness Measures: A Survey.
Computer Science, page 28.
Hoffart, J., Suchanek, F. M., Berberich, K., and Weikum,
G. (2013). Yago2: A spatially and temporally en-
hanced knowledge base from wikipedia. Artificial In-
telligence, 194:28–61.
Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C.,
de Melo, G., Gutierrez, C., Gayo, J. E. L., Kirrane,
S., Neumaier, S., Polleres, A., Navigli, R., Ngomo,
A.-C. N., Rashid, S. M., Rula, A., Schmelzeisen, L.,
Sequeda, J., Staab, S., and Zimmermann, A. (2022).
Knowledge Graphs. ACM Comput. Surv., 54(4):1–37.
arXiv:2003.02320 [cs].
Itti, L. and Baldi, P. (2006). Bayesian surprise attracts hu-
man attention. In Advances in neural information pro-
cessing systems, pages 547–554.
Jolliffe, I. T. and Cadima, J. (2016). Principal compo-
nent analysis: a review and recent developments.
Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences,
374(2065).
Kotkov, D., Wang, S., and Veijalainen, J. (2016). A survey
of serendipity in recommender systems. Knowledge-
Based Systems, 111.
Lundberg, S. M. and Lee, S.-I. (2017). A unified ap-
proach to interpreting model predictions. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., editors, Advances
in Neural Information Processing Systems 30, pages
4765–4774. Curran Associates, Inc.
Makke, N. and Chawla, S. (2023). Interpretable scientific
discovery with symbolic regression: A review.
Marra, G., Giannini, F., Diligenti, M., and Gori, M. (2019).
Lyrics: a general interface layer to integrate logic in-
ference and deep learning. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery
in Databases, pages 283–298. Springer.
McCay-Peet, L. and Toms, E. G. (2015). Investigating
serendipity: How it unfolds and what may influence
it. Journal of the Association for Information Science
and Technology, 66(7):1463–1476.
Mcgarry, K. (2005). Mcgarry, k.: A survey of interesting-
ness measures for knowledge discovery. know. eng.
rev. 20(01), 39-61. Knowledge Eng. Review, 20:39–
61.
Mihalcea, R., Corley, C., and Strapparava, C. (2006).
Corpus-based and knowledge-based measures of text
semantic similarity. In AAAI, volume 6.
Milne, D. and Witten, I. H. (2008). Learning to link with
wikipedia. In Proceedings of the 17th ACM Con-
ference on Information and Knowledge Management.
ACM.
Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E.
(2016). A review of relational machine learning
for knowledge graphs. Proceedings of the IEEE,
104(1):11–33.
Page, L., Brin, S., Motwani, R., and Winograd, T. (1999).
The pagerank citation ranking: Bringing order to the
web. Technical Report 1999-66, Stanford InfoLab.
Previous number = SIDL-WP-1999-0120.
Palma, C. (2023). Modelling interestingness: Stories as L-
Systems and Magic Squares. In Text2Story@ECIR,
Dublin (Republic of Ireland).
Palma, C. (2024). Modelling interestingness: a workflow
for surprisal-based knowledge mining in narrative se-
mantic networks. In SEMMES’24: Semantic Methods
for Events and Stories, co-located with the 21th Ex-
tended Semantic Web Conference (ESWC2024).
Paulheim, H. (2013). Dbpedianyd - a silver standard bench-
mark dataset for semantic relatedness in dbpedia. In
NLP-DBPEDIA@ISWC.
Reisenzein, R., Horstmann, G., and Schützwohl, A. (2019).
The Cognitive-Evolutionary Model of Surprise: A Re-
view of the Evidence. Topics in Cognitive Science,
11(1):50–74.
Ristoski, P. and Paulheim, H. (2016). Semantic web in data
mining and knowledge discovery: A comprehensive
survey. Journal of Web Semantics, 36:1–22.
Schmidhuber, J. (2010). Formal theory of creativity, fun,
and intrinsic motivation (1990–2010). IEEE Trans-
actions on Autonomous Mental Development, 2:230–
247.
Silvia, P. J. (2009). Looking past pleasure: Anger, confu-
sion, disgust, pride, surprise, and other unusual aes-
thetic emotions. Psychology of Aesthetics, Creativity,
and the Arts, 3(1):48–51.
Strobl, C., Boulesteix, A.-L., Zeileis, A., and Hothorn, T.
(2007). Bias in random forest variable importance
measures: Illustrations, sources and a solution. BMC
Bioinformatics, 8(1).
Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., and
Bouchard, G. (2016). Complex embeddings for sim-
ple link prediction. In International Conference on
Machine Learning, pages 2071–2080.
Vanneschi, L. and Poli, R. (2012). Genetic programming
— introduction, applications, theory and open issues.
In Rozenberg, G., Bäck, T., and Kok, J. N., editors,
Handbook of Natural Computing. Springer, Berlin,
Heidelberg.
Zhu, G. and Iglesias, C. A. (2017). Computing semantic
similarity of concepts in knowledge graphs. IEEE
Transactions on Knowledge and Data Engineering,
29(1):72–85.
The WikiWooW Dataset: Harnessing Semantic Similarity and Clickstream-Data for Serendipitous Hyperlinked-Paths Mining in Wikipedia
425