Ehsan, U., & Riedl, M. O. (2020). Human-centered
explainable AI: Toward a reflective sociotechnical
approach. Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, 1–12.
https://doi.org/10.1145/3313831.3376592
Eidloth, L., Meiners, A.‑L., Thomaschewski, J., &
Hinderks, A. (2023). Pragmatic versus hedonic:
Determining the dominant quality in user experience
for professional and leisure collaboration tools. In
Proceedings of the 19
th
international conf. on web
Information Systems and Technologies (pp. 391–398).
SCITEPRESS. https://doi.org/10.5220/001220570000
3584
Faltejsková, O., Dvořáková, L., & Hotovcová, B. (2016).
Net promoter score integration into the enterprise
performance measurement and management system.
E+M Ekonomie a Management, 19(1), 93–107.
https://doi.org/10.15240/tul/001/2016-1-007
Flavián, C., Guinalíu, M., & Gurrea, R. (2006). The role
played by perceived usability, satisfaction and
consumer trust on website loyalty. Information &
Management, 43(1), 1–14.
Fox, J. (2020). Regression diagnostics: An introduction
(Second edition). Quantitative applications in the
social sciences: Vol. 79. SAGE.
Gelman, A., & Stern, H. (2006). The difference between
“significant” and “not significant” is not itself
statistically significant. The American Statistician,
60(4), 328–331. https://doi.org/10.1198/000313006X1
52649
Hassan, M., Kushniruk, A., & Borycki, E. (2024). Barriers
to and facilitators of artificial intelligence adoption in
health care: Scoping review. JMIR Human Factors, 11,
e48633. https://doi.org/10.2196/48633
Kelly, S., Kaye, S.‑A., & Oviedo-Trespalacios, O. (2023).
What factors contribute to the acceptance of artificial
intelligence? A systematic review. Telematics and
Informatics, 77, 101925. https://doi.org/10.1016
/j.tele.2022.101925
Kollmorgen, J., Hinderks, A., & Thomaschewski, J. (2024).
Selecting the appropriate user experience questionnaire
and guidance for interpretation: The UEQ family.
International Journal of Interactive Multimedia and
Artificial Intelligence, (In press), 1. https://doi.org/
10.9781/ijimai.2024.08.005
Kollmorgen, J., Schrepp, M., & Thomaschewski, J. (2023).
Influence of demographic variables and usage
behaviour on the perceived user experience. In M.
Marchiori, F. J. Domínguez Mayo, & J. Filipe (Eds.),
Lecture Notes in Business Information Processing. Web
Information Systems and Technologies (Vol. 494,
pp. 186–208). Springer Nature Switzerland.
https://doi.org/10.1007/978-3-031-43088-6_10
Laugwitz, B., Held, T., & Schrepp, M. (2008).
Construction and evaluation of a user experience
questionnaire. In A. Holzinger (Ed.), Lecture Notes in
Computer Science. HCI and Usability for Education
and Work (Vol. 5298, pp. 63–76). Springer Berlin.
https://doi.org/10.1007/978-3-540-89350-9_6
Lewis, J. R., & Sauro, J. (2021). Usability and user
experience: Design and evaluation. In G. Salvendy &
W. Karwowski (Eds.), Handbook of human factors and
ergonomics (pp. 972–1015). Wiley. https://doi.org/10.
1002/9781119636113.ch38
Liao, Q. V., Vorvoreanu, M., Subramonyam, H., &
Wilcox, L. (2024). Ux matters: The critical role of UX
in responsible AI. Interactions, 31(4), 22–27.
https://doi.org/10.1145/3665504
Meiners, A.‑L., Hinderks, A., & Thomaschewski, J. (2020).
Korrelationen zwischen UX-Fragebögen.
https://doi.org/10.18420/muc2020-ws105-375
Müller, H., & Sedley, A. (2014). Hats: Large-scale in-
product measurement of user attitudes & experiences
with happiness tracking surveys. In T. Leong (Ed.),
Proceedings of the 26
th
australian computer-human
interaction conference on designing futures: The future
of design (pp. 308–315). ACM. https://doi.org/10.
1145/2686612.2686656
O’Brien, R. M. (2007). A caution regarding rules of thumb
for variance inflation factors. Quality & Quantity, 41(5),
673–690.
Owen, R. (2019). Net promoter score and its successful
application. In K. Kompella (Ed.), Management for
Professionals. Marketing Wisdom (pp. 17–29).
Springer Singapore. https://doi.org/10.1007/978-981-
10-7724-1_2
R Core Team. (2024). R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing. https://www.r-project.org/
Raji, I. D., Kumar, I. E., Horowitz, A., & Selbst, A. (2022).
The fallacy of AII functionality. In 2022 ACM Conf. on
fairness accountability and transparency (pp. 959–
972). ACM. https://doi.org/10.1145/3531146.3533158
Reichheld, F. F. (2003). The one number you need to grow.
Harvard Business Review, 81(12), 46-54, 124.
Schrepp, M., Hinderks, A., & Thomaschewski, J. (2017).
Construction of a benchmark for the user experience
questionnaire (UEQ). International Journal of
Interactive Multimedia and Artificial Intelligence, 4(4),
40. https://doi.org/10.9781/ijimai.2017.445
Schrepp, M., & Thomaschewski, J. (2019). Construction
and first Validation of Extension Scales for the User
Experience Questionnaire (UEQ). https://doi.org/
10.13140/RG.2.2.19260.08325
Schrepp, M., & Thomaschewski, J. (2024). Response
instability in user experience questionnaires. Journal of
User Experience, 9–26.
Shin, D. (2021). The effects of explainability and
causability on perception, trust, and acceptance:
Implications for explainable AI. International Journal
of Human-Computer Studies, 146, 102551.
https://doi.org/10.1016/j.ijhcs.2020.102551
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer
acceptance and use of information technology:
Extending the unified theory of acceptance and use of
technology. MIS Quarterly, 36(1), 157–178.
https://doi.org/10.2307/41410412