
Chakraa, H., Leclercq, E., Gu
´
erin, F., and Lefebvre, D.
(2025). Integrating collision avoidance strategies into
multi-robot task allocation for inspection. Transac-
tions of the Institute of Measurement and Control,
47(7):1466–1477.
Chopra, S., Notarstefano, G., Rice, M., and Egerstedt, M.
(2017). A distributed version of the hungarian method
for multirobot assignment. IEEE Transactions on
Robotics, 33(4):932–947.
Doe, J. and Roe, R. (2025). The linear assignment problem
for robot-goal matching in autonomous swarm guid-
ance. Expert Systems, 42:e70067.
Fakih, S., Bidou, M. S., Tran, T. P., Perez, L., and
Autrique, L. (2024). Experimental prototype to val-
idate a method for solving an inverse heat conduc-
tion problem. In Huang, Y.-P., Wang, W.-J., Le, H.-
G., and Hoang, A.-Q., editors, Computational Intelli-
gence Methods for Green Technology and Sustainable
Development, pages 357–367, Cham. Springer Nature
Switzerland.
Giordani, S., Lujak, M., and Martinelli, F. (2010). A dis-
tributed algorithm for the multi-robot task allocation
problem. In Garc
´
ıa-Pedrajas, N., Herrera, F., Fyfe,
C., Ben
´
ıtez, J. M., and Ali, M., editors, Trends in Ap-
plied Intelligent Systems, pages 721–730, Berlin, Hei-
delberg. Springer Berlin Heidelberg.
Hussein, A. and Rusul, M. (2020). Applications of partial
differential equations. Journal of Physics: Conference
Series, 1591(1):012105.
Ismail, S. and Sun, L. (2017). Decentralized hungarian-
based approach for fast and scalable task allocation. In
2017 International Conference on Unmanned Aircraft
Systems (ICUAS), pages 23–28.
Luo, Z., Lu, H., and Wu, J. (2023). Real-time multi-robot
mission planning in cluttered environments. Robotics
and Autonomous Systems, 159:104201.
Rinaldi, M., Wang, S., Geronel, R. S., and Primatesta, S.
(2024). Application of task allocation algorithms in
multi-uav intelligent transportation systems: A critical
review. Big Data and Cognitive Computing, 8(12).
Smith, A. and Jones, B. (2023). Auction-algorithm sensi-
tivity for multi-robot task allocation. Automation in
Construction, 150:104492.
Tran, T. P. (2018a). A proposal method for reducing the
order of general heat conduction equation. ITM Web
Conf., 20:02014.
Tran, T. P. (2018b). Unknown parameter identification of
mobile heating source by using the sensitivity of sen-
sor network. ITM Web Conf., 20:02013.
Tran, T. P., Perez, L., and Autrique, L. (2017). Quasi-online
method for the identification of heat flux densities and
trajectories of two mobile heating sources. In 2017
11th Asian Control Conference (ASCC), pages 1395–
1400. IEEE.
Vergnaud, A., , Perez, L., and Autrique, L. (2020). Adaptive
selection of relevant sensors in a network for unknown
mobile heating flux estimation. IEEE Sensors Journal,
20:15133–15142.
Vergnaud, A., Beaugrand, G., Gaye, O., Perez, L., Luci-
darme, P., and Autrique, L. (2014). On-line identifi-
cation of temperature-dependent thermal conductivity.
In 2014 European Control Conference (ECC), pages
2139–2144. IEEE.
Vergnaud, A., Perez, L., and Autrique, L. (2016). Quasi-
online parametric identification of moving heating de-
vices in a 2d geometry. International Journal of Ther-
mal Sciences, 102:47–61.
Vergnaud, A., Tran, T. P., Perez, L., Lucidarme, P., and
Autrique, L. (2015). Deployment strategies of mobile
sensors for monitoring of mobile sources: method and
prototype. In Control Architectures of Robots 2015,
10th National Conference, Lyon, France.
Zhang, X., Li, Y., and Chen, Z. (2023). Team-based decen-
tralized deployment for distance-optimal multi-robot
task allocation via convex optimization. Sensors,
23(11):5103.
Optimizing Sensor Deployment Strategy for Tracking Mobile Heat Source Trajectory
485