
REFERENCES
Aggarwal, C. C. et al. (2016). Recommender systems, vol-
ume 1. Springer.
Balloccu, G., Boratto, L., Fenu, G., Malloci, F. M., and
Marras, M. (2024). Explainable recommender sys-
tems with knowledge graphs and language models. In
European Conference on Information Retrieval, pages
352–357. Springer.
Burke, R. (2002). Hybrid recommender systems: Survey
and experiments. User modeling and user-adapted in-
teraction, 12:331–370.
Cao, Y., Wang, X., He, X., Hu, Z., and Chua, T.-S. (2019).
Unifying knowledge graph learning and recommen-
dation: Towards a better understanding of user pref-
erences. In The world wide web conference, pages
151–161.
Giray, L. (2023). Prompt engineering with chatgpt: a guide
for academic writers. Annals of biomedical engineer-
ing, 51(12):2629–2633.
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S.
(2017). Neural collaborative filtering. In Proceedings
of the 26th international conference on world wide
web, pages 173–182.
Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo,
G. D., Gutierrez, C., Kirrane, S., Gayo, J. E. L.,
Navigli, R., Neumaier, S., et al. (2021). Knowledge
graphs. ACM Computing Surveys (Csur), 54(4):1–37.
Ji, S., Pan, S., Cambria, E., Marttinen, P., and Philip, S. Y.
(2021). A survey on knowledge graphs: Representa-
tion, acquisition, and applications. IEEE transactions
on neural networks and learning systems, 33(2):494–
514.
Lops, P., De Gemmis, M., and Semeraro, G. (2011).
Content-based recommender systems: State of the art
and trends. Recommender systems handbook, pages
73–105.
Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E.
(2015). A review of relational machine learning
for knowledge graphs. Proceedings of the IEEE,
104(1):11–33.
OpenAI (2023a). Chatgpt fine-tune descrip-
tion. https://help.openai.com/en/articles/
6783457-what-is-chatgpt. Accessed: 2024-03-
01.
OpenAI (2023b). Chatgpt prompt engineer-
ing. https://platform.openai.com/docs/guides/
prompt-engineering. Accessed: 2024-04-01.
Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., and Wu, X.
(2024). Unifying large language models and knowl-
edge graphs: A roadmap. IEEE Transactions on
Knowledge and Data Engineering.
Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the
difficulty of training recurrent neural networks. In
International conference on machine learning, pages
1310–1318. Pmlr.
Paulheim, H. (2017). Knowledge graph refinement: A sur-
vey of approaches and evaluation methods. Semantic
web, 8(3):489–508.
Ricci, F., Rokach, L., and Shapira, B. (2010). Introduction
to recommender systems handbook. In Recommender
systems handbook, pages 1–35. Springer.
Schafer, J. B., Frankowski, D., Herlocker, J., and Sen, S.
(2007). Collaborative filtering recommender systems.
In The adaptive web: methods and strategies of web
personalization, pages 291–324. Springer.
Seabra, A. (2024). Github repository. https://github.com/
antonyseabramedeiros/qasystems. Accessed: 2024-
04-01.
Shen, W., Wang, J., and Han, J. (2014). Entity linking with
a knowledge base: Issues, techniques, and solutions.
IEEE Transactions on Knowledge and Data Engineer-
ing, 27(2):443–460.
Su, X. and Khoshgoftaar, T. M. (2009). A survey of col-
laborative filtering techniques. Advances in artificial
intelligence, 2009(1):421425.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
(2017). Attention is all you need. Advances in neural
information processing systems, 30.
Wang, H., Zhang, F., Xie, X., and Guo, M. (2018). Dkn:
Deep knowledge-aware network for news recommen-
dation. In Proceedings of the 2018 world wide web
conference, pages 1835–1844.
Wang, M., Wang, M., Xu, X., Yang, L., Cai, D., and Yin,
M. (2023). Unleashing chatgpt’s power: A case study
on optimizing information retrieval in flipped class-
rooms via prompt engineering. IEEE Transactions on
Learning Technologies.
Wang, P., Shi, T., and Reddy, C. K. (2020). Text-to-sql gen-
eration for question answering on electronic medical
records.
Wang, X., He, X., Wang, M., Feng, F., and Chua, T.-S.
(2019). Neural graph collaborative filtering. In Pro-
ceedings of the 42nd international ACM SIGIR con-
ference on Research and development in Information
Retrieval, pages 165–174.
White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert,
H., Elnashar, A., Spencer-Smith, J., and Schmidt,
D. C. (2023). A prompt pattern catalog to enhance
prompt engineering with chatgpt. arXiv preprint
arXiv:2302.11382.
Zhang, S., Yao, L., Sun, A., and Tay, Y. (2019). Deep
learning based recommender system: A survey and
new perspectives. ACM computing surveys (CSUR),
52(1):1–38.
Zhao, Z., Fan, W., Li, J., Liu, Y., Mei, X., Wang, Y., Wen,
Z., Wang, F., Zhao, X., Tang, J., et al. (2023). Recom-
mender systems in the era of large language models
(llms). arXiv preprint arXiv:2307.02046.
Zhu, Y., Wang, X., Chen, J., Qiao, S., Ou, Y., Yao, Y.,
Deng, S., Chen, H., and Zhang, N. (2023). Llms for
knowledge graph construction and reasoning: Recent
capabilities and future opportunities. arXiv preprint
arXiv:2305.13168.
Semantic Prompting over Knowledge Graphs for Next-Generation Recommender Systems
403