
augmented generation for large language models: A
survey.
Glass, M., Rossiello, G., Chowdhury, M. F. M., Naik, A. R.,
Cai, P., and Gliozzo, A. (2022). Re2g: Retrieve,
rerank, generate.
Google Trends (2025). “llm” – google trends (worldwide,
all time). https://trends.google.de/trends/explore?
date=all&q=LLM&hl=de. Accessed: 2025-06-12.
Hove, S. E. and Anda, B. (2005). Experiences from
conducting semi-structured interviews in empirical
software engineering research. Proceedings -
International Software Metrics Symposium, 2005:10–
23.
Jin, M., Shahriar, S., Tufano, M., Shi, X., Lu,
S., Sundaresan, N., and Svyatkovskiy, A. (2023).
InferFix: End-to-end program repair with LLMs.
Kim, J., Hur, M., and Min, M. (2025). From
RAG to QA-RAG: Integrating generative AI for
pharmaceutical regulatory compliance process. In
Proceedings of the 40th ACM/SIGAPP Symposium on
Applied Computing, pages 1293–1295. Association
for Computing Machinery.
Kukreja, S., Kumar, T., Bharate, V., Purohit, A., Dasgupta,
A., and Guha, D. (2024). Performance evaluation
of vector embeddings with retrieval-augmented
generation. In 2024 9th International Conference
on Computer and Communication Systems (ICCCS),
pages 333–340.
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin,
V., Goyal, N., K
¨
uttler, H., Lewis, M., Yih, W.-t.,
Rockt
¨
aschel, T., Riedel, S., and Kiela, D. (2021).
Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks. arXiv:2005.11401.
Li, Y., Li, Y., Wang, X., Jiang, Y., Zhang, Z., Zheng, X.,
Wang, H., Zheng, H.-T., Yu, P. S., Huang, F., and
Zhou, J. (2024). Benchmarking multimodal retrieval
augmented generation with dynamic VQA dataset and
self-adaptive planning agent.
Liu, C., Cetin, P., Patodia, Y., Chakraborty, S., Ding, Y., and
Ray, B. (2024). Automated code editing with search-
generate-modify.
Lu, S., Duan, N., Han, H., Guo, D., Hwang, S.-w.,
and Svyatkovskiy, A. (2022). ReACC: A retrieval-
augmented code completion framework.
Mahboub, A., Za’ter, M. E., Al-Rfooh, B., Estaitia, Y.,
Jaljuli, A., and Hakouz, A. (2024). Evaluation of
semantic search and its role in retrieved-augmented-
generation (RAG) for arabic language.
OECD (2017). Entrepreneurship at a Glance 2017. OECD.
Pipitone, N. and Alami, G. H. (2024). LegalBench-RAG: A
benchmark for retrieval-augmented generation in the
legal domain.
Ryan, M. J., Xu, D., Nivera, C., and Campos, D. (2025).
Enronqa: Towards personalized rag over private
documents. arXiv preprint arXiv:2505.00263.
Sarthi, P., Abdullah, S., Tuli, A., Khanna, S., Goldie, A.,
and Manning, C. D. (2024). RAPTOR: Recursive
abstractive processing for tree-organized retrieval.
Schmidt, C. (2004). The analysis of semi-structured
interviews. In Flick, U., von Kardorff, E., and Steinke,
I., editors, A Companion to Qualitative Research,
pages 253–258. SAGE, London.
Sha, Y., Feng, Y., He, M., Liu, S., and Ji, Y.
(2023). Retrieval-augmented knowledge graph
reasoning for commonsense question answering.
Number: 15 Publisher: Multidisciplinary Digital
Publishing Institute.
Singh, A., Ehtesham, A., Kumar, S., and Khoei, T. T.
(2025a). Agentic retrieval-augmented generation: A
survey on agentic RAG.
Singh, A., Ehtesham, A., Kumar, S., and Khoei, T. T.
(2025b). Agentic retrieval-augmented generation: A
survey on agentic rag.
Sivathapandi, P. K. P. (2022). Advanced ai algorithms
for automating data preprocessing in healthcare:
Optimizing data quality and reducing processing time.
Tang, Y. and Yang, Y. (2024). MultiHop-RAG:
Benchmarking retrieval-augmented generation for
multi-hop queries.
Tayal, A. and Tyagi, A. (2024). Dynamic contexts
for generating suggestion questions in RAG based
conversational systems. In Companion Proceedings
of the ACM Web Conference 2024, pages 1338–1341.
Wang, S., Liu, J., Song, S., Cheng, J., Fu, Y., Guo, P.,
Fang, K., Zhu, Y., and Dou, Z. (2024). DomainRAG:
A chinese benchmark for evaluating domain-specific
retrieval-augmented generation.
Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter,
B., Xia, F., Chi, E., Le, Q., and Zhou, D. (2023).
Chain-of-thought prompting elicits reasoning in large
language models.
Wen, Z., Tian, Z., Wu, W., Yang, Y., Shi, Y., Huang, Z.,
and Li, D. (2023). GROVE: A retrieval-augmented
complex story generation framework with a forest of
evidence.
Xiong, G., Jin, Q., Lu, Z., and Zhang, A. (2024).
Benchmarking retrieval-augmented generation for
medicine.
Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. (2023). ReAct: Synergizing reasoning
and acting in language models.
Yu, C., Yang, G., Chen, X., Liu, K., and Zhou,
Y. (2022). BashExplainer: Retrieval-augmented
bash code comment generation based on fine-tuned
CodeBERT.
Zhang, B., Yang, H., Zhou, T., Ali Babar, M., and Liu, X.-
Y. (2023a). Enhancing financial sentiment analysis
via retrieval augmented large language models.
In Proceedings of the Fourth ACM International
Conference on AI in Finance, ICAIF ’23, pages 349–
356. Association for Computing Machinery.
Zhang, F., Chen, B., Zhang, Y., Keung, J., Liu,
J., Zan, D., Mao, Y., Lou, J.-G., and Chen,
W. (2023b). RepoCoder: Repository-level code
completion through iterative retrieval and generation.
Zhang, Y., Li, Y., Cui, L., Cai, D., Liu, L., Fu, T., Huang, X.,
Zhao, E., Zhang, Y., Chen, Y., Wang, L., Luu, A., Bi,
W., Shi, F., and Shi, S. (2023c). Siren’s Song in the AI
Ocean: A Survey on Hallucination in Large Language
Models. ArXiv.
Retrieval-Augmented Generation in Industry: An Interview Study on Use Cases, Requirements, Challenges, and Evaluation
121