
Corallo, A., Crespino, A. M., Vecchio, V. D., Gervasi, M.,
Lazoi, M., and Marra, M. (2023). Evaluating maturity
level of big data management and analytics in indus-
trial companies. Technological Forecasting and Social
Change, 196:122826.
Desouza, K., G
¨
otz, F., and Dawson, G. S. (2021). Maturity
Model for Cognitive Computing Systems in the Public
Sector.
Fornasiero, R., Kiebler, L., Falsafi, M., and Sardesai, S.
(2025). Proposing a maturity model for assessing Ar-
tificial Intelligence and Big data in the process indus-
try. International Journal of Production Research,
63(4):1235–1255.
Fukas, P. (2022). The Management of Artificial Intelli-
gence: Developing a Framework Based on the Arti-
ficial Intelligence Maturity Principle. In CEUR Work-
shop Proceedings, volume 3139, pages 19 – 27.
Gartner (2019). Our Top Data and Analytics Predicts for
2019.
G
¨
okalp, M. O., G
¨
okalp, E., Kayabay, K., G
¨
okalp, S.,
Koc¸yi
˘
git, A., and Eren, P. E. (2022a). A process
assessment model for big data analytics. Computer
Standards & Interfaces, 80:103585.
G
¨
okalp, M. O., G
¨
okalp, E., Kayabay, K., Koc¸yi
˘
git, A., and
Eren, P. E. (2021). Data-driven manufacturing: An
assessment model for data science maturity. Journal
of Manufacturing Systems, 60:527 – 546.
G
¨
okalp, M. O., G
¨
okalp, E., Kayabay, K., Koc¸yi
˘
git, A., and
Eren, P. E. (2022b). The development of the data
science capability maturity model: a survey-based re-
search. Online Information Review, 46(3):547 – 567.
G
¨
oks¸en, H. and G
¨
oks¸en, Y. (2021). A Review of Matu-
rity Models Perspective of Level and Dimension. Pro-
ceedings, 74(1).
Haertel, C., Pohl, M., Nahhas, A., Staegemann, D., and Tur-
owski, K. (2022). Toward A Lifecycle for Data Sci-
ence: A Literature Review of Data Science Process
Models. In PACIS 2022 Proceedings.
Haertel, C., Staegemann, D., Daase, C., Pohl, M., Nahhas,
A., and Turowski, K. (2023). MLOps in Data Sci-
ence Projects: A Review. In 2023 IEEE International
Conference on Big Data (BigData), pages 2396–2404.
IEEE.
Helal, I. M. A., Elsayed, H. T., and Mazen, S. A.
(2023). Assessing and Auditing Organization’s Big
Data Based on COBIT 5 Controls: COVID-19 Ef-
fects. Lecture Notes in Networks and Systems, 753
LNNS:119 – 153.
Hijriani, A. and Comuzzi, M. (2024). Towards a Maturity
Model of Process Mining as an Analytic Capability.
H
¨
uner, K. M., Ofner, M., and Otto, B. (2009). Towards
a maturity model for corporate data quality manage-
ment. In Proceedings of the ACM Symposium on Ap-
plied Computing, pages 231–238.
IT Governance Institute (2007). COBIT 4.1. IT Governance
Institute.
Janiesch, C., Zschech, P., and Heinrich, K. (2021). Ma-
chine learning and deep learning. Electronic Markets,
31(3):685–695.
John, M. M., Olsson, H. H., and Bosch, J. (2025). An em-
pirical guide to MLOps adoption: Framework, matu-
rity model and taxonomy. Information and Software
Technology, page 107725.
Klopper, R. and Lubbe, S. (2007). The Matrix Method of
Literature Review. Alternation, 14.
Korsten, G., Aysolmaz, B., Ozkan, B., and Turetken, O.
(2024). A Capability Maturity Model for Developing
and Improving Advanced Data Analytics Capabilities.
PAJAIS Preprints (Forthcoming).
Martinez, I., Viles, E., and Olaizola, I. G. (2021). Data Sci-
ence Methodologies: Current Challenges and Future
Approaches. Big Data Research 24.
Menukhin, O., Mandungu, C., Shahgholian, A., and
Mehandjiev, N. (2019). Now and Next: A Maturity
Model to Guide Analytics Growth. UK Academy for
Information Systems Conference Proceedings 2019.
Page, M., Moher, D., Bossuyt, P., Boutron, I., Hoffmann,
T., Mulrow, C., Shamseer, L., Tetzlaff, J., Akl, E.,
Brennan, S., Chou, R., Glanville, J., Grimshaw, J.,
Hr
´
objartsson, A., Lalu, M., Li, T., Loder, E., Mayo-
Wilson, E., Mcdonald, S., and Mckenzie, J. (2021).
PRISMA 2020 explanation and elaboration: Updated
guidance and exemplars for reporting systematic re-
views. BMJ, 372:n160.
Paulk, M., Curtis, B., Chrissis, M., and Weber, C. (1993).
Capability maturity model, version 1.1. IEEE Soft-
ware, 10(4):18–27.
Pereira, R. and Serrano, J. (2020). A review of methods
used on it maturity models development: A systematic
literature review and a critical analysis. Journal of
Information Technology, 35(2):161–178.
Pour, M. J., Abbasi, F., and Sohrabi, B. (2023). Toward a
Maturity Model for Big Data Analytics: A Roadmap
for Complex Data Processing. International Jour-
nal of Information Technology and Decision Making,
22(1):377 – 419.
Rahlmeier, N. and Hopf, K. (2024). Bridging Fields of Prac-
tice: How Boundary Objects Enable Collaboration in
Data Science Initiatives. Wirtschaftsinformatik 2024
Proceedings, 55.
Raj M, A., Bosch, J., and Olsson, H. H. (2023). Maturity
Assessment Model for Industrial Data Pipelines. In
2023 30th Asia-Pacific Software Engineering Confer-
ence (APSEC), pages 503–513.
Saltz, J. S. and Krasteva, I. (2022). Current approaches for
executing big data science projects - a systematic lit-
erature review. PeerJ Computer Science, 8(e862).
Schreckenberg, F. and Moroff, N. U. (2021). Developing
a maturity-based workflow for the implementation of
ML-applications using the example of a demand fore-
cast. Procedia Manufacturing, 54:31–38.
Schulz, M., Neuhaus, U., Kaufmann, J., Badura, D.,
Kuehnel, S., Badewitz, W., Dann, D., Kloker, S.,
Alekozai, E. M., and Lanquillon, C. (2020). Intro-
ducing DASC-PM: A Data Science Process Model. In
Proceedings of ACIS 2020. Association for Informa-
tion Systems.
Shah, T. R. (2022). Can big data analytics help organisa-
Guiding Improvement in Data Science: An Analysis of Maturity Models
459