
6 CONCLUSIONS AND FUTURE
WORK
In this study, we presented a data-driven control ap-
proach for a PEM electrolyzer. A dataset was built
from a phenomenological model of the system. This
dataset was used to build a GPR-based machine learn-
ing model. Furthermore, a NMPC strategy is pro-
posed to control the output temperature of the elec-
trolyzer from the machine learning model. The ex-
periments corroborated a good system identification
by providing a low RMSE between the ground-truth
and estimate, as well as the use of such a machine
learning model to develop a control strategy that pre-
serves the temperature at the set-point.
The results suggest that a data-driven control strat-
egy is useful when a phenomenological model does
not exist or when it is too simple to represent non-
linear dynamics. Direct measures in the system are
enough to build a dataset and develop a machine
learning model.
Future work will implement the data-driven con-
trol strategy in the real system (PEM electrolyzer), be-
sides, it will include a covariance analysis to represent
confidence in the estimate, as well as a tuning of the
weight factors to find a smoother control signal. Fur-
thermore, a stochastic MPC approach (Hern
´
andez-
Rivera et al., 2024) would be interesting to deal with
measurement uncertainties. Finally, a stability analy-
sis is considered to extend these results.
ACKNOWLEDGEMENTS
The authors acknowledge support from the Na-
tional Program for Doctoral Formation (Minciencias-
Colombia, 885-2020), and the emerging research
group Multi-Robot and Control Systems (MACS) for
their assistance with the review of the manuscript.
REFERENCES
Barros-Queiroz, J., Torrico, B., Bordons, C., Nogueira,
F., and Ridao, M. (2024). Temperature control for
a PEM electrolyser powered by a renewable source,
volume 45, pages 1–6.
Becerra-Mora, Y., Chicaiza, W. D., juliana Sobral Barros-
Queiroz,
´
Angel Acosta, J., and Esca
˜
no, J. M. (2024).
Aprendizaje de la se
˜
nal de control para un elec-
trolizador tipo PEM, volume 45, pages 1–6.
Becerra-Mora, Y. A. and Acosta, J.
´
A. (2024). Data-driven
learning and control of nonlinear system dynamics.
Nonlinear Dynamics.
Camacho, E. F. and Bordons, C., editors (1999). Model pre-
dictive control. Springer-Verlag, Berlin Heidelberg.
Carmo, M., Fritz, D. L., Mergel, J., and Stolten, D. (2013).
A comprehensive review on pem water electrolysis.
International Journal of Hydrogen Energy, 38:4901–
4934.
Hern
´
andez-Rivera, A., Velarde, P., Zafra-Cabeza, A., and
Maestre, J. M. (2024). Optimal drug administration in
cancer therapy using stochastic non-linear model pre-
dictive control. In 2024 European Control Conference
(ECC), pages 862–867.
Keller, R., Rauls, E., Hehemann, M., M
¨
uller, M., and
Carmo, M. (2022). An adaptive model-based feed-
forward temperature control of a 100 kw pem elec-
trolyzer. Control Engineering Practice, 120:104992.
Machado, D. O., Chicaiza, W. D., Esca
˜
no, J. M., Gallego,
A. J., de Andrade, G. A., Normey-Rico, J. E., Bor-
dons, C., and Camacho, E. F. (2023). Digital twin of
a fresnel solar collector for solar cooling. Applied En-
ergy, 339:120944.
Ministerio para la Transici
´
on Ecol
´
ogica y el Reto
Demogr
´
afico (MITERD) (2020). Hoja de
ruta del hidr
´
ogeno: Una apuesta por el
hidr
´
ogeno renovable. Vicepresidencia Cuarta
del Gobierno de Espa
˜
na. Dispon
´
ıvel em:
https://www.miteco.gob.es/content/dam/miteco/
es/ministerio/planes-estrategias/hidrogeno/
hojarutahidrogenorenovable tcm30-525000.PDF.
Molina, P., Rios, C., de Leon, C. M., and Brey, J. (2024).
Heat management system design and implementation
in a pem water electrolyser. International Journal of
Hydrogen Energy.
Mora, M. and Bordons, C. (2022). Desarrollo y vali-
daci
´
on experimental del modelo din
´
amico de un elec-
trolizador pem de 1kw para su integraci
´
on con gen-
eraci
´
on renovable. XLIII Jornadas de Autom
´
atica: li-
bro de actas, pages 560–567.
Ogumerem, G. S. and Pistikopoulos, E. N. (2020). Para-
metric optimization and control for a smart proton ex-
change membrane water electrolysis (pemwe) system.
Journal of Process Control, 91:37–49.
Rasmussen, C. and Williams, C. (2006). Gaussian Pro-
cesses for Machine Learning. The MIT Press.
United Nations Framework Convention on Climate
Change (UNFCCC) (2015). Paris agreement.
https://unfccc.int/files/meetings/paris nov 2015/
application/pdf/paris agreement spanish .pdf. Ac-
cessed: 2024-05-30.
Data-Driven Control of a PEM Electrolyzer
273