
LTH for their valuable assistance, and Jungner Com-
pany for its support.
REFERENCES
Allegro, D., Terreran, M., and Ghidoni, S. (2024). Multi-
camera hand-eye calibration for human-robot collab-
oration in industrial robotic workcells. arXiv preprint
arXiv:2406.11392.
Bahadir, O., Siebert, J. P., and Aragon-Camarasa, G. (2024).
Continual learning approaches to hand–eye calibra-
tion in robots. Machine Vision and Applications,
35(4):97.
Enebuse, I., Foo, M., Ibrahim, B. S. K. K., Ahmed, H.,
Supmak, F., and Eyobu, O. S. (2021). A comparative
review of hand-eye calibration techniques for vision
guided robots. IEEE Access, 9:113143–113155.
Enebuse, I., Ibrahim, B. K. K., Foo, M., Matharu, R. S., and
Ahmed, H. (2022). Accuracy evaluation of hand-eye
calibration techniques for vision-guided robots. Plos
one, 17(10):e0273261.
Ha, J. (2022). Probabilistic framework for hand–eye and
robot–world calibration ax = yb. IEEE Transactions
on Robotics, 39(2):1196–1211.
Halme, R.-J., Lanz, M., K
¨
am
¨
ar
¨
ainen, J., Pieters, R., La-
tokartano, J., and Hietanen, A. (2018). Review of
vision-based safety systems for human-robot collab-
oration. Procedia Cirp, 72:111–116.
Hong, I. and Ha, J. (2025). Generative adversarial networks
for solving hand-eye calibration without data corre-
spondence. IEEE Robotics and Automation Letters.
Horaud, R. and Dornaika, F. (1995). Hand-eye calibra-
tion. The international journal of robotics research,
14(3):195–210.
Hua, J. and Zeng, L. (2021). Hand–eye calibration algo-
rithm based on an optimized neural network. In Actu-
ators, volume 10, page 85. MDPI.
Huang, S., Gojcic, Z., Usvyatsov, M., Wieser, A., and
Schindler, K. (2021). Predator: Registration of 3d
point clouds with low overlap. In Proceedings of the
IEEE/CVF Conference on computer vision and pat-
tern recognition, pages 4267–4276.
Jiang, J., Luo, X., Luo, Q., Qiao, L., and Li, M. (2022).
An overview of hand-eye calibration. The Interna-
tional Journal of Advanced Manufacturing Technol-
ogy, 119(1):77–97.
Koide, K. and Menegatti, E. (2019). General hand–eye
calibration based on reprojection error minimization.
IEEE Robotics and Automation Letters, 4(2):1021–
1028.
Li, L., Yang, X., Wang, R., and Zhang, X. (2024). Auto-
matic robot hand-eye calibration enabled by learning-
based 3d vision. Journal of Intelligent & Robotic Sys-
tems, 110(3):130.
Ma, L., Bazzoli, P., Sammons, P. M., Landers, R. G., and
Bristow, D. A. (2018). Modeling and calibration of
high-order joint-dependent kinematic errors for indus-
trial robots. Robotics and Computer-Integrated Man-
ufacturing, 50:153–167.
Ma, Q., Li, H., and Chirikjian, G. S. (2016). New proba-
bilistic approaches to the ax= xb hand-eye calibration
without correspondence. In 2016 IEEE international
conference on robotics and automation (ICRA), pages
4365–4371. IEEE.
Mallon, J. and Whelan, P. F. (2007). Which pattern? bias-
ing aspects of planar calibration patterns and detection
methods. Pattern recognition letters, 28(8):921–930.
Munaro, M., Rusu, R. B., and Menegatti, E. (2016). 3d
robot perception with point cloud library.
Pachtrachai, K., Vasconcelos, F., Edwards, P., and Stoy-
anov, D. (2021). Learning to calibrate-estimating the
hand-eye transformation without calibration objects.
IEEE Robotics and Automation Letters, 6(4):7309–
7316.
Robinson, N., Tidd, B., Campbell, D., Kuli
´
c, D., and Corke,
P. (2023). Robotic vision for human-robot interac-
tion and collaboration: A survey and systematic re-
view. ACM Transactions on Human-Robot Interac-
tion, 12(1):1–66.
Shiu, Y. C. and Ahmad, S. (1987). Calibration of wrist-
mounted robotic sensors by solving homogeneous
transform equations of the form ax= xb.
Strobl, K. H. and Hirzinger, G. (2006). Optimal hand-eye
calibration. In 2006 IEEE/RSJ international confer-
ence on intelligent robots and systems, pages 4647–
4653. IEEE.
Tabb, A. and Ahmad Yousef, K. M. (2017). Solving the
robot-world hand-eye (s) calibration problem with it-
erative methods. Machine Vision and Applications,
28(5):569–590.
Ten Pas, A., Gualtieri, M., Saenko, K., and Platt, R. (2017).
Grasp pose detection in point clouds. The Interna-
tional Journal of Robotics Research, 36(13-14):1455–
1473.
Tsai, R. Y., Lenz, R. K., et al. (1989). A new technique for
fully autonomous and efficient 3 d robotics hand/eye
calibration. IEEE Transactions on robotics and au-
tomation, 5(3):345–358.
Wang, G., Li, W., Jiang, C., Zhu, D., Li, Z., Xu, W.,
Zhao, H., and Ding, H. (2021). Trajectory planning
and optimization for robotic machining based on mea-
sured point cloud. IEEE transactions on robotics,
38(3):1621–1637.
Wang, X. and Song, H. (2024). One-step solving the hand–
eye calibration by dual kronecker product. Journal of
Mechanisms and Robotics, 16(10).
Wang, X. V., Wang, L., Mohammed, A., and Givehchi,
M. (2017). Ubiquitous manufacturing system based
on cloud: A robotics application. Robotics and
Computer-Integrated Manufacturing, 45:116–125.
Wijesoma, S., Wolfe, D., and Richards, R. (1993). Eye-
to-hand coordination for vision-guided robot control
applications. The International Journal of Robotics
Research, 12(1):65–78.
Wu, J., Liu, M., Zhu, Y., Zou, Z., Dai, M.-Z., Zhang, C.,
Jiang, Y., and Li, C. (2020). Globally optimal sym-
ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics
340