REFERENCES
Anthropic. (2024). Model Context Protocol: A standard for
connecting AI assistants to data sources. Technical
Report.
Asai, A., Wu, Z., Wang, Y., Sil, A., & Hajishirzi, H. (2023).
Self-RAG: Learning to retrieve, generate, and critique
through self-reflection. arXiv preprint arXiv:2310.
11511.
Ashley, K. D. (2017). Artificial intelligence and legal
analytics: New tools for law practice in the digital age.
Cambridge University Press.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., & Amodei, D. (2020).
Language models are few-shot learners. Advances in
Neural Information Processing Systems, 33, 1877-1901.
Chalkidis, I., Fergadiotis, M., Malakasiotis, P., Aletras, N.,
& Androutsopoulos, I. (2020). LEGAL-BERT: The
muppets straight out of law school. In Findings of the
Association for Computational Linguistics: EMNLP
2020 (pp. 2898-2904).
Chalkidis, I., Fergadiotis, M., Tsarapatsanis, D., Aletras,
N., Androutsopoulos, I., & Malakasiotis, P. (2021).
LexGLUE: A benchmark dataset for legal language
understanding in English. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics (pp. 1946-1961).
Dale, R. (2019). Law and word order: NLP in legal tech.
Natural Language Engineering, 25(1), 211-217.
Edge, D., Trinh, H., Cheng, N., Bradley, J., Chao, A., Mody,
A., Winsor, E., Yeh, C., Arredondo, S., Cummings, D.,
Johnstone, J., & Larson, J. (2024). From local to global:
A graph RAG approach to query-focused summarization.
arXiv preprint arXiv:2404.16130.
Guu, K., Lee, K., Tung, Z., Pasupat, P., & Chang, M.
(2020). Retrieval augmented language model pre-
training. In International Conference on Machine
Learning (pp. 3929-3938). PMLR.
Karpukhin, V., Oğuz, B., Min, S., Lewis, P., Wu, L.,
Edunov, S., Chen, D., & Yih, W. T. (2020). Dense
passage retrieval for open-domain question answering.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (pp. 6769-
6781).
Katz, D. M., Bommarito II, M. J., Gao, S., & Arredondo, P.
(2024). GPT-4 passes the bar exam. Philosophical
Transactions of the Royal Society A, 382(2270),
20230254.
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., Yih, W. T.,
Rocktäschel, T., Riedel, S., & Kiela, D. (2020).
Retrieval-augmented generation for knowledge-
intensive NLP tasks. Advances in Neural Information
Processing Systems, 33, 9459-9474.
Li, J., Monroe, W., Ritter, A., Galley, M., Gao, J., &
Jurafsky, D. (2016). Deep reinforcement learning for
dialogue generation. In Proceedings of the 2016
Conference on Empirical Methods in Natural
Language Processing (pp. 1192-1202).
Lin, C. Y. (2004). ROUGE: A package for automatic
evaluation of summaries. In Text summarization
branches out (pp. 74-81).
Manning, C. D., Raghavan, P., & Schütze, H. (2008).
Introduction to information retrieval. Cambridge
University Press.
Nay, J. J. (2023). Large language models as corporate
lobbyists. arXiv preprint arXiv:2301.01181.
Nguyen, D. Q., & Nguyen, A. T. (2020). PhoBERT: Pre-
trained language models for Vietnamese. In Findings of
the Association for Computational Linguistics: EMNLP
2020 (pp. 1037-1042).
Park, J. S., O'Brien, J. C., Cai, C. J., Morris, M. R., Liang,
P., & Bernstein, M. S. (2023). Generative agents:
Interactive simulacra of human behavior. In
Proceedings of the 36th Annual ACM Symposium on
User Interface Software and Technology (pp. 1-22).
Schick, T., Dwivedi-Yu, J., Dessì, R., Raileanu, R., Lomeli,
M., Zettlemoyer, L., Roller, S., Sukhbaatar, S., Weston,
J., & Scialom, T. (2023). Toolformer: Language models
can teach themselves to use tools. Advances in Neural
Information Processing Systems, 36, 68821-68844.
Sergot, M. J., Sadri, F., Kowalski, R. A., Kriwaczek, F.,
Hammond, P., & Cory, H. T. (1986). The British
Nationality Act as a logic program. Communications of
the ACM, 29(5), 370-386.
Turtle, H., & Croft, W. B. (1991). Evaluation of an
inference network-based retrieval model. ACM
Transactions on Information Systems, 9(3), 187-222.
Vu, T., Nguyen, D. Q., Nguyen, D. Q., Dras, M., &
Johnson, M. (2018). VnCoreNLP: A Vietnamese
natural language processing toolkit. In Proceedings of
the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics:
Demonstrations (pp. 56-60).
Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E., Le,
Q., & Zhou, D. (2022). Chain-of-thought prompting
elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35, 24824-
24837.
Wooldridge, M. (2009). An introduction to multiagent
systems. 2nd edition. John Wiley & Sons.
Wu, Q., Bansal, G., Zhang, J., Wu, Y., Li, B., Zhu, E., Jiang,
L., Zhang, X., Zhang, S., Liu, J., Awadallah, A. H.,
White, R. W., Dumais, S., & Wang, C. (2023). AutoGen:
Enabling next-gen LLM applications via multi-agent
conversation. arXiv preprint arXiv:2308.08155.
Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., & Artzi,
Y. (2019). BERTScore: Evaluating text generation with
BERT. In International Conference on Learning
Representations.
Zhong, H., Guo, Z., Tu, C., Xiao, C., Liu, Z., & Sun, M.
(2020). JEC-QA: A legal-domain question answering
dataset. In Proceedings of the AAAI Conference on
Artificial Intelligence (Vol. 34, No. 05, pp. 9701-9708).