
real-world relational databases. In Database and Ex-
pert Systems Applications: 35th International Confer-
ence, DEXA 2024, Naples, Italy, August 26–28, 2024,
Proceedings, Part I, page 93–107, Berlin, Heidelberg.
Springer-Verlag. doi: 10.1007/978-3-031-68309-1 8.
Floratou, A. et al. (2024). NL2SQL is a solved
problem... not! In 4th Annual Conference
on Innovative Data Systems Research (CIDR ’24).
https://vldb.org/cidrdb/papers/2024/p74-floratou.pdf.
Fokoue, A. et al. (2024). A system and bench-
mark for LLM-based Q&A on heterogeneous data.
https://arxiv.org/abs/2409.05735.
Galimzhanova, E., Muntean, C. I., Nardini, F. M.,
Perego, R., and Rocchietti, G. (2023). Rewrit-
ing conversational utterances with instructed large
language models. In 2023 IEEE/WIC Int’l. Conf.
on Web Intelligence and Intelligent Agent Technol-
ogy (WI-IAT), pages 56–63. doi: 10.1109/WI-
IAT59888.2023.00014.
Hong, Z., Yuan, Z., Zhang, Q., Chen, H., Dong, J., Huang,
F., and Huang, X. (2025). Next-Generation Database
Interfaces: A Survey of LLM-based Text-to-SQL.
http://arxiv.org/abs/2406.08426.
Izquierdo, Y. et al. (2024). Busca360: A search application
in the context of top-side asset integrity management
in the oil & gas industry. In Proc. 39th Brazilian Sym-
posium on Data Bases, pages 104–116, Porto Alegre.
SBC.
Jurafsky, D. and Martin, J. H. (2024). Speech and Lan-
guage Processing: An Introduction to Natural Lan-
guage Processing, Computational Linguistics, and
Speech Recognition with Language Models. Online
manuscript released August 20, 2024, 3rd edition.
https://web.stanford.edu/
˜
jurafsky/slp3/.
Lei, F., Chen, J., Ye, Y., Cao, R., Shin, D., SU, H., SUO,
Z., Gao, H., Hu, W., Yin, P., Zhong, V., Xiong, C.,
Sun, R., Liu, Q., Wang, S., and Yu, T. (2025). Spider
2.0: Evaluating language models on real-world enter-
prise text-to-SQL workflows. In The Thirteenth In-
ternational Conference on Learning Representations.
https://openreview.net/forum?id=XmProj9cPs.
Liu, N., Chen, L., Tian, X., Zou, W., Chen, K., and
Cui, M. (2024). From LLM to conversational agent:
A memory enhanced architecture with fine-tuning of
large language models. CoRR, abs/2401.02777. doi:
10.48550/ARXIV.2401.02777.
Nascimento, E. R., Avila, C. V., Izquierdo, Y. T., Gar-
cia, G. M., Feij
´
o, L., Facina, M. S., Lemos,
M., and Casanova, M. A. (2025a). On the
text-to-SQL task supported by database keyword
search. In Proc. 27th International Conference
on Enterprise Information Systems - Volume 1:
ICEIS, pages 173–180. INSTICC, SciTePress. doi:
10.5220/0013126300003929.
Nascimento, E. R., Garc
´
ıa, G. M., Izquierdo, Y. T., Feij
´
o,
L., Coelho, G. M., Oliveira, A. R., Lemos, M., Garcia,
R. S., Leme, L. A. P., and Casanova, M. A. (2025b).
LLM-based text-to-SQL for real-world databases. SN
COMPUT. SCI., 6(2). doi: 10.1007/s42979-025-
03662-6.
Oliveira, A. et al. (2025). Small, medium, and large lan-
guage models for text-to-SQL. In Conceptual Model-
ing, pages 276–294, Cham. Springer Nature Switzer-
land. doi: 10.1007/978-3-031-75872-0 15.
Pasupat, P. and Liang, P. (2015). Compositional seman-
tic parsing on semi-structured tables. In Proc. 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th Int’l. Joint Conf. on Natural
Language Processing (Volume 1: Long Papers), pages
1470–1480, Beijing, China. Association for Computa-
tional Linguistics. doi: 10.3115/v1/P15-1142.
Quamar, A. et al. (2020). An ontology-based conversa-
tion system for knowledge bases. In Proc. 2020 ACM
SIGMOD International Conference on Management
of Data, SIGMOD ’20, page 361–376, New York,
NY, USA. Association for Computing Machinery. doi:
10.1145/3318464.3386139.
Shi, L., Tang, Z., Zhang, N., Zhang, X., and Yang, Z.
(2025). A survey on employing large language mod-
els for text-to-SQL tasks. ACM Comput. Surv. doi:
10.1145/3737873.
Silva, M. O. (2025). Automation in the generation and
evaluation of dialogues for text-to-SQL systems: An
agent-based approach. Master’s thesis, Department of
Informatics, PUC-Rio, Rio de Janeiro, Brazil.
Wang, S., Sun, X., Li, X., Ouyang, R., Wu, F., Zhang, T., Li,
J., Wang, G., and Guo, C. (2025). GPT-NER: Named
entity recognition via large language models. In
Chiruzzo, L., Ritter, A., and Wang, L., editors, Find-
ings of the Association for Computational Linguistics:
NAACL 2025, pages 4257–4275, Albuquerque, New
Mexico. Association for Computational Linguistics.
doi: 10.18653/v1/2025.findings-naacl.239.
Wei, J., Kim, S., Jung, H., and Kim, Y.-H. (2024). Lever-
aging large language models to power chatbots for
collecting user self-reported data. Proc. ACM on
Human-Computer Interaction, 8(CSCW1):1–35. doi:
10.1145/3637364.
Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. (2023). REACT: Synergizing reason-
ing and acting in language models. In Proc. 11th In-
ternational Conference on Learning Representations
(ICLR 2023).
Zhang, J., Qian, K., Liu, Z., Heinecke, S., Meng, R., Liu,
Y., Yu, Z., Wang, H., Savarese, S., and Xiong, C.
(2024a). DialogStudio: Towards richest and most
diverse unified dataset collection for conversational
ai. In Findings of the Association for Computational
Linguistics: EACL 2024, pages 2299–2315, St. Ju-
lian’s, Malta. Association for Computational Linguis-
tics. https://aclanthology.org/2024.findings-eacl.152/.
Zhang, Y., Henkel, J., Floratou, A., Cahoon, J., Deep, S.,
and Patel, J. M. (2024b). ReAcTable: Enhancing react
for table question answering. Proc. VLDB Endow.,
17(8):1981–1994. doi: 10.14778/3659437.3659452.
Zheng, H., Liu, Y., Ge, Y., Awadallah, A. H., and Gao, J.
(2023). Judging LLM-as-a-judge: Evaluating large
language models for summarization evaluation. In
Proc. 61st Annual Meeting of the Association for
Computational Linguistics (ACL 2023), pages 11034–
11056. https://aclanthology.org/2023.acl-long.616.
WEBIST 2025 - 21st International Conference on Web Information Systems and Technologies
288